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Abstract

This thesis deals with the problem of modelling information that varies over space
and time. Four modelling frameworks are investigated. (1) By using conceptual
modelling languages, and by extending some of these with temporal constructs,
it is possible to describe temporal aspects of real world systems at the conceptual
level. This way, structural, functional, behavioural, object-oriented and rule per-
spectives of real world systems can be described in a formal and illustrative way.
(2) By using a directed acyclic graph, successor-predecessor relationships between
objects and the changes that transformed an object from one state into a successive
state can be represented. (3) By using set-theory it is possible to describe informa-
tion using mathematics. Moreover, changes in a system can be described in a more
formal manner. And finally, (4) by structuring real world entities according to the
object-oriented model, which is considered to be the most expressive and powerful
modelling framework. In addition to these four frameworks, three ‘byproducts’ are
presented in this thesis. These includes generalization and data reduction in spa-
tiotemporal data sets, implementation of bitemporal lifespans and temporal fuzzy
regions.
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Chapter 1

INTRODUCTION

The main subject of this thesis is modelling of spatiotemporal information, infor-
mation where both the position and the history of the information are of interest
to the users. The term spatial is used rather than geographical to emphasize the
fact that the location and geometric descriptions need not refer to a geodetic coor-
dinate reference system. The aim of this thesis is to find frameworks that deal with
all, or as many as possible, aspects of temporal and spatiotemporal information in
order to describe and model some selected part of the real world, also known as
the universe of discourse (UoD). Four frameworks for describing spatiotemporal
information have been investigated. These are as follows:

� conceptual modelling languages,

� directed acyclic graphs,

� set-theory and

� the object-oriented paradigm.

In addition, some other issues related to temporal and spatiotemporal modelling
have been studied.

The results are presented as separate reports given in the chapters 2 to 8.

1.1 Time and Temporal GIS

In this section, the basic concepts and definitions of time, temporal databases and
temporal GIS will be given along with references to the most important work in
these fields.

11



12 CHAPTER 1. INTRODUCTION

1.1.1 The Time Domain

An initial step in designing a temporal database is to choose a suitable time model.
Since we in this thesis are concerned about geographical information, a Newto-
nian time model is considered sufficient. On the other hand, if nuclear particles
or astronomical phenomena are being studied, a relativistic time model has to be
implemented.

Conceptually, we distinguish between three structural models of time, linear,
branching and cyclic [Ben83] [Wor95]. In linear time, time advances from the past
into the future in a totally ordered manner. In branching time, time is considered
linear until the present time, then time advances into several possible futures. In
many applications, e.g. in archaeology, it also make sense to model several possible
pasts. Cyclic time is associated with periodic patterns of time such as years, weeks
and days.

We also distinguish between two models of time in terms of the density of
the time line [Ben83]. The continuous model considers the time dimension to be
isomorphic to the real numbers. Each point on the continuous time line is called an
instant and, due to the density requirement, an instant can have no duration. The
discrete model considers the time dimension to be isomorphic to the integers. Each
integer correspond to an atomic unit of time called a chronon. A chronon is thus
the smallest duration of time that can be represented in this time model. Finally,
the time model can also be characterized by its boundedness, i.e. if there exist a
beginning of time and possibly an end of time.

Even if time naturally conceptualizes into a one-dimensional domain, there are
many types of times that can be associated with facts. First there is the time when
a future fact is forecasted or decided. Then, there is the time when the fact become
true in the reality, then there is the time when the fact is observed and measured,
then there is the time when the observation is recorded in the database, then there is
the time when the data in the database is used to derive new data, then we have the
time when decisions are made upon the data, then there is display or print-out time
time, and yet there is the time when data from one database is added to another
database [JS96].

Thus, time has to be regarded as multidimensional. However, two orthogonal
time dimensions are emphasized in temporal database research: valid time which
is the time when a fact is true in the real world, and transaction time which is the
time when the fact is current in the modelled reality, i.e. in the database [SA86]
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[Sno92]. The valid time dimension is considered to start at some infinite past (the
beginning of time), and progress into some infinite future (the end of time), whereas
the transaction time dimension is considered to stretch from the time of creation of
the database up to the present time. The other time dimensions can be captured by
using time as an ordinary attribute. This is known as user-defined time.

1.1.2 Temporal Data

Temporal data differs from non-temporal data in one major aspect. Instead of hav-
ing only one value, there is one value for each instant of time. Important in a large
body of research on temporal data and databases is the dichotomy between states
and events. Normally, a state is considered to hold over an extent of time, whereas
events delimit states, and are considered to be instantaneous [JS96].

Suppose we have a record that represent the state of an object over an interval
of time, this interval would then be the lifespan of the record. A lifespan can be
a time interval which is a connected sequence of chronons (or instants). But we
could also imagine that the record is valid during one interval, then to be invalid
for some interval, and then valid again during some later interval. The lifespan of
such a record is called a temporal element which is defined to consist of a finite set
of disjoint time intervals.

Depending on the application, a data model may support valid time, transaction
time or both. A model that supports only valid time is called a historical or valid-
time model, a model that supports only transaction time is called a roll-back or
transaction model and a model that supports both times is called a bitemporal
model. A model that supports neither is known under the retronym snapshot model
[SA86] [Sno92].

In bitemporal databases, there are three types of updates concerned with the
time when updates are made. Consider that an update was made at transaction time
TT concerning a change that occurred at valid time V T . A retro-active update is
an update where TT > V T , i.e. the update is done after the change occurred in
reality. If TT < V T , the update is called a pro-active update, and if TT = V T

we are speaking of a real-time updates.
In bitemporal databases, the lifespan of a record may be a bitemporal interval,

which is a region in two-space of valid time and transaction time with sides parallel
to the time axes [JCE+94]. In many cases, we do not know for how long a certain
fact is going to hold in valid time. Lifespans in these cases, may stretch into infinity,
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and the symbol 1 is often used to hold this value. But, since the transaction time
dimension has an upper bound at the present time, bitemporal periods are delimited
by the symbol now or utc (until changed) which hold the present time.

Thus, when a record is updated in a database, a new record must be added,
while now values of the old record’s lifespan is replaced with the time of the trans-
action. This way, several versions of the same logical entity may be spread over
several records in the database. In order to identify the records that are associated
with the same entity, each record is equipped with a surrogate key that identifies
the logical entity [JS96]. This way, it is possible to derive successions from the
lifespans of the record, but this requires some computing effort. It is therefore of
help to store explicit succession links in the data set [CT95].

1.1.3 Behaviour of Attributes and Attribute Values

An entity have many properties. A property that is considered to be constant over
time is called a time-invariant property. A property that changes over time, is said
to undergo temporal variation. We describe them using temporal attributes.

Figure 1.1 shows three kinds of behaviour of attribute values. Some types of
attributes, such as salary, are stepwise constant and can only change through events
that have a limited duration or no duration (instantaneous changes). Continuously
changing attributes may also exhibit a wide range of behaviour. It may change
smoothly, irregularly or uniformly. A third type of behaviour is called discrete
attributes. Attributes of this type are stored in so-called time sequences [SS93]
[MP93].

In some cases, successive records may be associated with non-contiguous life-
spans, e.g. if the records represent observations that are made at certain points of
time. In order to derive values between observations, i.e. for times when no value
is explicitly stored in the database, a derivation function is used [JS96]. Three
types of derivation functions exist: Attributes that are stepwise constant, are as-
sociated with a stepwise constant derivation function, attributes that are smoothly
varying are associated with interpolation functions, whereas a discrete derivation
function returns values only for those times where a value is explicitly stored in the
database.
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Figure 1.1: Types of changes to an attribute.

1.1.4 The Space Domain

Traditionally, the locational attributes of geographical information systems have
utilized coordinate systems that are homeomorphic to the Euclidean plane. Using
such coordinates systems locally in the map projection plane is sufficient. Thus,
even if the topology of the earth is homeomorphic to the sphere, this thesis assumes
the Euclidean space model.

1.1.5 Spatiotemporal Data Models

Before computers, geographical information was stored in the form of cartographic
paper maps. The paper map model thus became the basis upon which the first data
models for GIS were developed. Two data model paradigms emerged. One is
grid-based or location-based and is known as the raster paradigm. The other is
geometry-based or object-based and is known as the vector paradigm.

Al-Taha and Barrera [AB90] outline two types of models for temporal GIS. In
the change-based model, facts are recorded to be valid during certain time inter-
vals. Among the limitations of this model is the fact that all changes are considered
to be instantaneous, such that continuous processes cannot be represented. In the
time-based model only one basic change is recognized: the passage of time.

One of the simplest spatiotemporal models is the snapshot model, which is
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Figure 1.2: The snapshot model.

illustrated in Figure 1.2. In this model, the state of the UoD is given at regular
or irregular intervals in different maps, one complete map for each time interval.
The drawback with this model is that two snapshots contain much of the same
data and that events in the real world cannot be identified. The problem of data
redundancy is mostly a problem with vector-based data models. But for raster-
based data models, such as remotely sensed images, the approach is useful since
the data model correspond to the way such images are recorded. Hamre [Ham95]
has implemented a temporal GIS which integrates such images together with other
temporal information.

Another simple method is to use a model where each record is timestamped
with a time interval indicating the period of time during which the record is valid.
Hunter and Williamson [HW90] and Galetto and Viola [GV94] have implemented
such an approach and show that time slices can be retrieved easily by simple
queries. However, such a model spreads the different versions of the same ob-
ject over several non-related tuples in the same table. This model can be improved
by adding explicit references to preceding and succeeding versions of each object.
Ramachandran, MacLeod and Dowers [RMD94] deal with this issue in an object-
oriented model. They implement a Temporal Change Object which is an object
that consists of a set of references to past (historic) and future (scheduled) versions
together with a reference to the current version.

The space-time composite model, which is illustrated in Figure 1.3, has been
proposed by Langran [LC88]. It is based on the principle that every line in space
and time is projected down to the spatial plane and intersected with each other to
create a polygon mesh. Each polygon in this mesh is associated with its own at-
tribute history. Each new amendment is intersected with the already existing lines,
and new polygons are formed with individual thematic histories. The methods can
be implemented by storing the spatial component in an ordinary snapshot GIS,
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Figure 1.3: The Space time composite data model.
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Figure 1.4: The amendment vector model.

while the thematic attributes can be stored in a temporal database. The results that
were obtained looked promising, but only smaller data sets were tested.

However, this data model will also have some redundancy since two contigu-
ous objects may have full or partial common history if they at some point were (or
are) parts of the same logical object. Moreover, the model is vulnerable to frag-
mentation as the number of polygons can grow exponentially with time (Saafeld’s
work [Saa91] supports this theory).

An alternative approach is to represent the data only in terms of changes or
events. Langran briefly discusses this event-oriented method as a vector approach
(Figure 1.4), where the current state can be found by applying amendments from
a base map or current state map [LC88]. In some cases, where the the number of
changes are relatively small in relation to the number of objects, this can be a quite
useful method. Ohsawa and Kim [OK98] implemented such a vector approach us-
ing an inverse differential script. In this method, the current state is represented by
a complete snapshot, while historic time slices can be obtained by tracing through
the change script in a backward manner.

A raster-based method for time sequence data has been implemented by Peu-
quet and Duan [PD95]. This model consists of a base state database and one com-
pactly stored change image for each event (i.e. change). They show that the model
is space saving compared to the snapshot model, and efficient in terms of common
query types.
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The most abstract way to implement a spatiotemporal data structure is in the
form of a three- (x; y; t) or four-dimensional (x; y; z; t)polygon mesh. Such vector
models have received little attention in the GIS community. Although, two alterna-
tive models have been described by Worboys. In [Wor92], regions are described by
so-called simplical T-complexes, where each complex is a collection of so-called
T-simplexes. A 2-T-simplex is then a triangular prism covering a triangular area in
space, and an interval in time. In [Wor94a], this model has been extended such that
each T-simplex is associated with a bitemporal lifespan. However, these models
has the same fragmentation problem as the space-time composite model.

The spatial objects of the vector model, may be included as the locational at-
tribute of objects in an object-oriented data model. The advantage of the object-
oriented paradigm, is that it allows us to encapsulate an entity and its entire his-
tory into one single object [KRS90]. Misund, Skogan and Bjørnås [Mis93][BS93]
proposed such a model where different versions of cartographic objects can be ac-
cessed by indicating a time parameter as well as other parameters (such as map
scale).

1.2 Towards a Better Temporal GIS

Most of the data models presented in the previous sections fall into the category
of change-based models. Therefore, they are not good at capturing the semantics
of the temporal real world, e.g. they are not able to handle information that is
continuously changing over time. In order to improve this, we need a framework
where such information can be conceptualized. This framework should be based
on ontology which is the branch of philosophy that deals with modelling the real
world.

One approach studied in this thesis, is to use conceptual modelling, which is
a technique that have been developed within the field of information systems en-
gineering. Over the last decade, we have seen an increasing interest in extending
existing modelling languages to capture the semantics of geographical and tempo-
ral information. The so-called ERT model (entity-relationship-time model), which
is an extended entity-relationship model designed for temporal information, is de-
scribed in various sources [MSW92] [TL91b] [TL91a] [TLW91]. Hadzilacos and
Tryfona [HT96] [HT97] have presented another extension of the entity-relationship
model for geographical applications. Tveite [Tve92] has presented a similar exten-
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sion that also provides some temporal constructs, while Spaccapietra and Parent et
al. [SPZ98a] [PSZ+98] presents a more comprehensive formalism for spatiotem-
poral applications. However, these models are only dealing with the structural
perspective of the UoD.

Interesting approaches can also be found in the field of artificial intelligence
(AI). Since AI deals with knowledge representation, many applications of AI need
to handle knowledge that is varying over space and time. In McCarthy and Hayes’
situation calculus [MH69], knowledge is represented by a set S of situations (both
real and hypothetical situations) that captures the state of the universe at instants of
time. Then, information about the real world can be drawn in the form of fluents
which are functions from S into S (situational fluent) or into the set of booleans
(propositional fluent). Thus, a fact can be drawn from S by a propositional fluent.
This means that the fluent raining(p)(s) will return true if it is raining at position
p in situation s. Changes and actions are modelled as situational fluents, conse-
quently the fluent open-door(d)(s) will return a new situation in which the door
d is open. Hence, situational fluents represent functional relationships between
different situations.

Allen’s general theory of action and time [All84], which is partly based on
[Mou78], describes the world by a set of temporally qualified assertions describing
knowledge about past, present and future time. The static aspects of the world are
captured by properties whereas the dynamic aspects of the world are captured by
occurrences. Occurrences can again, according to [Mou78], be divided into events
which focus on performances and achievements, and processes which focus on
activities that occur over intervals of time. Allen’s theory also provides means of
representing causal relationships. Two types of causal relationships are discussed.
Agent causality means that an occurrence was caused by some agent (usually a
person or organization), while event causality means that an occurrence was caused
by some other occurrence. Allen’s theory is supported by a temporal logic (or tense
logic) along with a set of relationships between time intervals [All83].

In recent research of temporal GIS we have seen an increasing interest in mod-
elling the dynamic aspects of information. Yuan [Yua98] states that such an ap-
proach is necessary to enable temporal GISs to efficiently handle queries about
static and dynamic aspects of the UoD. Claramunt and Thériault [CT95] recog-
nizes the dichotomy between states and events, and have explicit representation of
events in addition to state records in their data model. In Peuquet’s Triad model
[Peu94], spatiotemporal information is viewed from where (spatial), when (time)
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and what (thematic) perspectives . A fourth corner can be added to represent the
objects which are characterized by all those three perspectives and Cheng [CM98]
adds the fifth corner, processes, which can be related to all the other four corners.

In the recent literature, several taxonomies of changes have been presented.
Claramunt and Thériault [CT95] distinguish between three types of changes or
processes: The first type of changes include those that concern the evolution of a
single entity. This includes basic changes as appearance, disappearance and trans-
formations. The second type of changes includes those that involve functional
relationships between several entities. This includes replacement processes such
as succession and permutation, and diffusion processes such as production, repro-
duction and transmission. The third type of changes includes those that are the
evolution of spatial structures involving several entities. This includes restructur-
ing processes such as split, merge and reallocation; for example of polygons in a
polygon mesh.

The change-aspect of information can also be visualized using a conceptual
language, such as the language developed by Hornsby and Egenhofer [HE97]. Us-
ing this language, a set of 21 different types of changes were identified among ob-
jects. A similar taxonomy has been presented for Voronoi diagrams [MAGM98].

Another interesting approach to temporal information modelling is to model
features as functions over time. This can be done either in the form of abstract data
types (ADT’s) or in the form of object-oriented models. Wuu and Dayal [WD92]
presented such a temporal object-oriented model, together with a query language
based on the OODAPLEX object-oriented data model. Erwig et al. [EGSV97]
[ESG97] presented a model where real valued functions over time, called moving
reals, as well as moving points and moving regions were studied. They suggest that
such functions could be implemented by linear approximations using data points.
They show that this model can help strengthen the expressive power of queries.
E.g. suppose that we need to determine at which time two points were closest to
each other. This can be achieved by first determining the distance between the two
points as a function over time, and then find the minimum value of this function.

The work described in this section provides, in my opinion, a better framework
for developing a future temporal GIS. The aim of this thesis, is to try and find a uni-
fied framework that could deal with as many aspects as possible. It has been done
by studying conceptual modelling techniques in combination with a set-theoretical
approach, while at the same time accommodating the concepts described above.
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1.3 Thesis Outline

The thesis is written as independent reports, which are presented in the chapters 2
through 8. Nevertheless, comments and introductory stuff are therefore repeated
throughout the thesis. Thus, each chapter can be read independently.

The main contribution of this thesis is in the four articles given in chapters 2
through 5 respectively. Additionally, three ‘byproducts’ are given in the Chapters 6
through 8.

Some of the articles are published as conference papers, while others are sub-
mitted to journals and conference proceedings. The comments from the reviewers
have been of great value, and their comments have been incorporated in this thesis.
In the remainder of this section, we give a brief overview of each article and how
they are related.

1.3.1 Chapter 2: Conceptual Modelling in Spatiotemporal Information
System Design

One of the main topics of the article is the importance of describing the UoD in a
way that is closer to human perceptions of the real world, and without any concern
about how to implement it. This type of modelling falls in under the branch of
philosophy known as ontology, and is carried out using conceptual modelling lan-
guages. Moreover, conceptual modelling languages are often graphical and easy
to understand, even by non-experts. A conceptual schema can therefore be under-
stood by a broader audience, and several persons and potential users can contribute
to the earlier stages of the GIS development. This is more important in temporal
GIS than in non-temporal GIS as there are more aspects to the temporal world than
there is to a single snapshot.

In the field of information systems engineering, a number of standardized mod-
elling languages have been developed over the years. In addition, we have seen a
number of special purpose languages that adds additional information about the
UoD, such as spatial and temporal characteristics.

The conceptual modelling languages can be divided into a set of classes accord-
ing to the perspective of the UoD they aim to describe. In [SK96], seven different
perspectives of conceptual modelling are described. At least five of these are of
special interest in the development of a temporal GIS. These are the structural
perspective, the functional perspective, the behavioural perspective, the object-
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oriented perspective and the rule perspective. These perspectives were studied with
the utility in temporal GIS development in mind.

The article gives a brief introduction to conceptual modelling, and then de-
scribes each of the five perspectives in more detail with emphasis on temporal and
spatiotemporal applications. Along with each perspective, a few examples on spa-
tiotemporal systems are given. There is also an original contribution in the article
in form of a generic behaviour model. In this model, objects are considered to be
either alive or dead, and if they are alive, they are either in a state of (possibly
gradual) change or they are in a static state. This model has provided a basis for
many of the other models and frameworks presented in this thesis.

Additionally, the article briefly describes the history graph notation. This no-
tation, which is considered to belong to the behavioural perspective is described in
detail in Chapter 3.

The article has been accepted for publication in Transaction in GIS [Rened].
An earlier (and shorter) version of the article was presented at the ScanGIS confer-
ence in 1997 [Ren97].

1.3.2 Chapter 3: Conceptual Modelling of Spatiotemporal Data using
Graph Structures

The main topic of the article is to extend the dichotomy between events and states
to a more general framework. In this framework, successive relationships between
states of objects are preserved through event or change objects. Both states and
events can have a duration and are associated with a time-interval. Three cases
are given. In the first case, the events are instantaneous whereas the states have
duration, e.g. the splitting of parcels in a cadastral database. At the other extreme
we find the case where the states have no duration and changes have duration, e.g.
glaciers that are continuously changing. In the third case, which lies in between
the two extremes, both events and states have duration, e.g. the position of a ship
that is sailing between harbours.

Temporal relationships between states and events are preserved explicitly in the
model and linked together in a directed acyclic graph called a history graph. This
graph has been given a graphical notation as a conceptual modelling language.
Based on the notation of history graphs, a set of seven basic change types were
identified. These are creation, destruction, alteration, reincarnation, split, merge
and reallocation. Furthermore, some other related issues are discussed in the ar-
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ticle. These include the problem of compound objects, temporal topology and
implementation.

Some related references are not cited in the article. These include Claramunt
and Thériault [CT95] [CT96] and Hornsby and Egenhofer [HE97]. These ref-
erences were not known to me at time of writing, or they were not yet published.
Claramunt and Thériault both give a taxonomy of change types and present a model
where changes and events are represented as explicit events. But, they do not times-
tamp events in the sense that they can have duration. Hornsby and Egenhofer pre-
sented a conceptual language and gave a taxonomy of change types that was more
comprehensive than mine. Moreover, they also studied changes in compound ob-
jects, but they did not have an explicit representation of change objects. On the
other hand, they had a better terminology which is partly incorporated in the final
version of this article.

In Chapter 4, the history graph model has been extended into the bitemporal
domain with concepts from [HE97], with set objects, and with causal relationships.
Furthermore, it has been given a more formal semantics using the temporal set-
theory. In Chapter 4 the term tropology also appears for the first time. This term
is a more precise term than the term temporal topology that appears in Chapter 3
and in most other literature. The term temporal topology can also be understood as
‘changes in topology over time’, whereas tropology is more generally defined as
‘the study of changes’.

In general, the history graph model have been so fundamental in this research
that it is repeated in many other articles. This applies to the Chapters 2, 4 and 6.

An early version of this article was presented at the BrnoGIS conference in
1996 [Ren96]. Some of the most important changes from the original BrnoGIS
paper include change in terminology, particularly about names on change types.

1.3.3 Chapter 4: A Framework for Temporal and Spatiotemporal Mod-
elling Based on Set-Theory

It is well known that the set-theory provides a general framework for many ap-
plications of computer science. The set-theory is the backbone of the relational
database model; it is utilized in object-oriented database systems and in program-
ming languages. Branches of the set-theory, such as point-set topology and alge-
braic topology have also been of great interest to the GIS community.

However, the temporal database theories that emerged in the database com-
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munities were extended from the snapshot database theories, and not based on a
temporal set-theory. But, a temporal set-theory was nowhere to be found in the
literature. This article is an attempt to propose such a theory, and to discuss some
of its applications in temporal GIS. The article is considered to be the main contri-
bution of this thesis.

In the temporal set-theory, everything is considered to be functions over time:
attributes, n-tuples, sets and relations. We can define functions where the argu-
ments as well as the results are functions over time, e.g. if two reals are given as
functions over time, their sum is also a function over time. Each function is asso-
ciated with a lifespan which is the set of times during which the function returns
a non-null value. If the functions were defined as partial functions, the lifespan
would correspond to the domain of the functions. But, in order to avoid the prob-
lem of obtaining values for times outside the lifespan, the symbol? (null) is intro-
duced, such that a value can be returned for all times. In addition, the article also
includes some initial definitions of the bitemporal set-theory.

Using the temporal set-theory, tropology can be defined in a more formal way.
The article presents four basic tropological operators. These are creation, destruc-
tion, modification and causality. By combining these operators, a selection of 18
different types of changes is defined. The tropology is associated with the history
graphs and the history graph model have been extended to accommodate the new
concepts introduced in the article.

Finally, the problem of implementing different functions over time is discussed.
Data models for simple attributes, spatiotemporal attributes as well as temporal sets
are presented. The results of this section is used in Chapter 5, where a model for a
temporal object-oriented GIS is investigated.

A shorter version of this article was presented at the NewDB’98 workshop that
was held in conjunction with the ER’98 conference in Singapore. The proceedings
of this workshop has been published in volume 1552 of Lecture Notes in Computer
Science [Ren98].

The main inspiration to this article was drawn from two research reports writ-
ten by a research group at FernUniversität Gesamthochschule in Hagen, Germany
[EGSV97] [ESG97]. Interestingly, one of these reports [ESG98] were presented at
the NewDB’98 workshop in the same session as my paper.
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1.3.4 Chapter 5: On the Design of Temporal Object-Oriented GIS

The article presents a basic object-oriented model for spatiotemporal data. The
model has emerged by combining and integrating various concepts of temporal
object databases presented in literature, together with concepts from the temporal
set-theory.

The article comprises of three main parts. In the first part, the basic object
model is presented together with a description of the concepts of temporal object-
oriented databases. In the second part, the concepts of temporal object-oriented
databases are exploited to make a generic class-hierarchy for an object-oriented
temporal GIS. In this hierarchy, emphasis is on the interface and the expected be-
haviour of objects, and not on the internal implementation. Amongst the classes
in the class hierarchy are set-classes and temporal set-classes, spatial atoms and
spatially referenced objects.

The third part gives an example where the basic class hierarchy is utilized. In
this example, which aims to describe a temporal map over Europe, many different
aspects of temporal information is dealt with. We have the population of countries
and cities which may vary continuously over time, while borders only changes
instantaneously. A country can be a monarchy at one time, and a republic at another
time. A city can be in one country at one time and in another at another time, and
so on. The coastline, is considered to be a static entity, whereas multinational
organizations, such as EU, are modelled by temporal sets.

The advantage of the object-oriented models are that they provide more mod-
elling power and is closer to the way humans perceive the real world. This way, it is
easier to capture the semantics of the real world in the data model. Another advan-
tage is that operations can be added to each class as desired by the developer in or-
der to enable specific queries to be answered or specific tasks to be performed. The
problem of the model is that the internal structure of the objects is not known from
outside, which means that it is hard for the query processor to optimize queries.

1.3.5 Chapter 6: On Generalization and Data Reduction in Spatiotemporal
Data Sets

This article discusses four aspects of data reduction and generalization in spa-
tiotemporal data sets. Generalization and data reduction in the time dimension,
in the spatial dimensions, for visualization and animation purposes, and for the
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utility of these approaches in GIS.
A clear distinction is made between data reduction and generalization, which

are considered to be conceptually different issues. The distinction conforms to the
way we distinguish between the terms data and information. In data reduction, the
aim is to reduce the volume of the data without influencing the information that
the data convey. In generalization, the aim is to reduce the amount of information
conveyed by the data set. This, in turn, will often result in a data reduction, but not
necessarily. If not, data reduction should be performed subsequent to generaliza-
tion.

The approach of this article has been to take the spatial transformations dis-
cussed by McMaster and Shea [MS92], and study how these should be imple-
mented in a spatiotemporal context. Most of the spatial transformations can also
be migrated to the dime dimension, e.g. in a map it is common to move two objects
apart to emphasize their topological relationships if the symbols overlap. In the
time dimension, the same operator can be utilized to move two successive events
apart in an animation to emphasize that they do not occur at the same time.

This article was presented at the ScanGIS’99 conference in Aalborg, Denmark
[Ren99b].

1.3.6 Chapter 7: Indexing and Representing Bitemporal Lifespans Using
Binary Trees

This article is a result of a study of bitemporal data and the problem of representing
bitemporal lifespans of objects in computers. The BL-tree introduced in this article
is a result of the discovery that such lifespans could be represented by hierarchical
data structures, more specifically by using binary trees. The name ‘BL-tree’ means
Bitemporal Lifespan tree or Binary ‘L’-tree, both equally descriptive.

The BL-tree has been implemented and work well. I believe that the BL-trees
would be useful in some applications, although the method is more awkward in
comparison to other methods.

1.3.7 Chapter 8: Temporal Fuzzy Regions: Concepts and Measurements

This article is an offspring from the temporal set theory that is a result from dis-
cussions between me and my supervisor, professor Bjørke. A fuzzy region can be
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described as a function from the space X�Y into the unit interval I = [0; 1]:

� :X�Y! I: (1.1)

Hence, a fuzzy region is a field where each point (x; y) is assigned a value �(x; y)
in the range [0; 1] denoting the degree of membership the point (x; y) has in the
fuzzy region, or the degree of which a point is considered to be ‘inside’ the region.
A temporal fuzzy region can similarly be defined as a function

� :X�Y �T! I: (1.2)

The main topic of the article is to provide some basic definitions associated with
such fuzzy regions.

The article is written together with professor Bjørke, and presented at the
ScanGIS’99 conference [BR99]. Note that the article uses a different notation for
fuzzy sets than this section and Appendix A do.

1.3.8 How to Read this Thesis

In principle, the articles can be read independently. However, it is recommended
to read Chapter 3 before Chapter 4 and 6, since the history graph notation have
been used or extended in these chapters. Moreover, it is also recommended to read
Chapter 4 before Chapter 5 and 8.

Some of the chapters, in particular Chapter 4, contain some mathematical ter-
minology that the reader might be unfamiliar with. Therefore, the most central
definitions, in particular those that are related to the set-theory, have been given in
Appendix A.
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Chapter 2

CONCEPTUAL MODELLING IN

SPATIOTEMPORAL INFORMATION

SYSTEM DESIGN

2.1 Introduction

Recent research has identified the need to handle historical information in geo-
graphical information systems (GIS). The various aspects of temporal GIS and
spatiotemporal models have therefore been an active research field since the late
1980s, see [ASS94], [Lan92] and the references therein.

Historically, research in GIS has focused on applicative issues of digital cartog-
raphy such as how to represent and manipulate spatial data structures in computers.
The traditional representation schemes for geographical information system have
utilized cartographic primitives such as points, lines, and areas. However, mod-
ern computers are capable of representing more information and knowledge about
the real world than the paper map model is able to convey, such as the temporal
perspective of spatial information.

In order to acquire and communicate the phenomena in the real world, it is
necessary to describe these phenomena at the conceptual level. Within the field of
information systems engineering, an abundance of conceptual modelling languages
to describe various aspects of the real world have existed for a long time. But,
‘Geographical information systems are often built without due considerations to
this discipline : : : ’ [HT96].

Wand and Weber [WW89] provide the following definition of an information
system:

29
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An information system is a human-created representation of a real
world system as perceived by somebody, built to deal with information
processing functions in organizations.

A spatiotemporal information system (STIS) is defined here as an information sys-
tem where the spatial location and the temporal history of the real world system is
of interest to the organizations.

Early research on spatiotemporal models for GIS has focused on the develop-
ment of computer models that are based on simplified concepts such as those that
only timestamp records. These so-called change-based approaches have draw-
backs, such as the lack of ability to model continuously changing objects [AB90].
One example of a change-based model has been described by Worboys [Wor94a],
where spatiotemporal objects have spatial and (bi-)temporal extent.

However, to create models that to a larger extent capture the semantics of the
real world, a better understanding of these aspects is required. In the literature, we
have seen important work on creating conceptual frameworks for modelling spa-
tiotemporal phenomena ([LC88] [Peu94] [CT95] [SPZ98a] [PSZ+98]). This arti-
cle describes work done on the modelling of various temporal (and spatial) aspects
of a real world system, in the sequel referred to as the universe of discourse (UoD),
using standard and specialized conceptual modelling languages already described
in the literature.

The remainder of this paper is organized as follows: The next section briefly
reviews some issues of conceptual modelling, and the following sections discuss
the most important models with respect to the design of an STIS. The paper closes
with some concluding remarks.

2.2 An Introduction to Conceptual Modelling

Computers and computer languages are generally abstract. Larger systems are
compiled from thousands of statements in written source code and it is virtually
impossible for even a skilled programmer to get a general view of a large program
without any visual support in the form of figures and diagrams. During the de-
velopment of computer systems it is important that all participants understand the
problem domain. In general, software designers and software users represent dif-
ferent level of knowledge about programming, and communication between them
may easily be distorted due to misunderstandings and lack of insight. The key to
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achieve a successful communication among participants is therefore to make them
share relevant conceptual knowledge about the domain of discourse. This can usu-
ally be achieved by developing so-called conceptual models [SK93].

A conceptual model is usually in a diagrammatic form (‘boxology’) with a
grammar which consists of boxes and links between them. Sølvberg and Krogstie
provide the following definition of a conceptual model [SK96]:

A conceptual model is the phenomenon of a domain at some level of
approximation externalized in a semi-formal or formal language.

In information systems engineering, a conceptual model serves as a tool for sense-
making, as a vehicle for communication and as documentation and basis for de-
sign and implementation. However, conceptual modelling techniques are not only
useful in the design and development of computer data structures, they have also
proven to be a valuable methodology in the acquisition of knowledge of real world
phenomena.

Interestingly, cartographic maps and conceptual models have much in com-
mon. A map can be defined as a selective, symbolic, generalized image of an
object presented in a given scale [Bjø95]. Comparing this definition of a map with
the definition of a conceptual model given above, one could conclude that a map
is a conceptual model. A map represents a phenomenon of a domain (a part of
the real world seen from above), it represents some level of approximation (it is
selective and generalized), and it is presented in a formal language (a symbolic im-
age where the symbols are defined through some legend). This may explain why
the paper map model has been such a popular basis for spatial computer models in
GIS.

2.2.1 A Brief Review of Conceptual Modelling Perspectives

Throughout the history of computers and computer systems development, an abun-
dance of different conceptual modelling languages has been presented. Two well-
known modelling languages are the entity-relationship diagrams and data-flow dia-
grams. In general, modelling languages can be divided into classes according to the
structural principle or the perspective of the language. In [SK96], the following
seven perspectives are described:

The structural perspective: The focus of the structural perspective is on data and
data modelling. The main components of structural models are entities, re-



32 CHAPTER 2. CONCEPTUAL MODELLING

lationships, attributes and constraints on relationships (i.e. cardinalities). It
was the development of the entity-relationship language of Chen [Che76]
that represented the breakthrough of this modelling perspective.

The functional perspective: The functional perspective focuses on processes rat-
her than on objects and physical entities. The best known conceptual mod-
elling language with a process perspective is the data flow diagram (DFD)
which describes the UoD in terms of external entities, processes, data stores
and (data-) flows between these.

The behavioural perspective: The basic concepts of the behavioural perspective
are states and transitions that transform the system from one state to another.
One of the problems with this perspective is that larger and complex systems
quickly become unmanageable with an almost infinitely number of possible
states. To overcome this, some languages such as Statecharts add hierarchi-
cal abstraction mechanisms in the form of AND and XOR decompositions
[Har87].

The rule perspective: The main application of the rule perspective is in knowl-
edge systems and artificial intelligence (AI). In general, a rule has the form:

ifhconditionithenhconsequencei:

Rules are both utilized to describe knowledge about the real world e.g. in
knowledge databases, and to express constraints on other conceptual mod-
els, e.g. on an ER-model. One drawback with rules is that conditions are
expected to be either true or false, while in cartography as in many other
applications, natural conditions often seem to have a fuzzy nature.

The object-oriented perspective: The object perspective has basically emerged
as a result of the need to support object-oriented programming languages like
SmallTalk, C++ and Eiffel. However, object-oriented analysis and design
have truly become a branch on its own, applying the same concepts that were
introduced in the object-oriented programming languages (i.e. the object-
oriented paradigm).

The communication perspective: The communication perspective is based on
the assumption of language/action theory developed by Austin and Searle
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called the speech act theory ([Aus62] [Sea69] [Sea79]). A few modelling
languages exist such as the action workflow diagrams [MWFF92].

The actor role perspective: The actor and role perspective is based on ideas de-
veloped during work on object-oriented programming languages and intelli-
gent agents in AI. Basic constructs of this perspective are actors, roles and
agents.

At first glance, it is quite evident that several of these perspectives are useful
in the development of an STIS. Behavioural models may help us understand how
objects change over time and functional models may possibly support us in that
process. Structural models on the other hand normally represent the real world
in a static fashion, although extensions to the ER-language that support changes
over time — such as the ERT-model [MSW92][TLW91] — have been developed.
The object-oriented approach is closely related to the structural approach since it
describes relationships between objects, but since the approach incorporates the
functionality of the objects, it is also possible to draw relations to the functional
approaches. Moreover, object-oriented models may further be supported by Ob-
jectcharts [CHB92] which is an object-oriented adaption of Statecharts [Har87].

The rule perspective is also of great value in the development of temporal in-
formation systems in general. Rules that are coupled with business policy may
change over time, and historical data should be viewed in context with the current
policy at the time in question. The ability to express policy in the form of explicit
rules is therefore critical.

2.2.2 Information, Data and Model Domains

The terms data and information are often used interchangeably in the literature.
However, a clear distinction between those two concepts should be maintained.
Data should be considered as a collection of symbols represented in computer-
readable form. Data exists in form of bits and bytes in computer files, whereas
information involves some kind of human interpretation, e.g. a coastline may be
represented as a stream of points connected with straight line segments. This piece
of data conveys some information that a user may interpret as fjords, bays and
peninsulas, when presented in a graphical format. In other words, information is
associated with a higher perception level, whereas data is associated with low level
computer representation.
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Along this line of perception levels, three domain levels of information system
modelling have been identified [SK93]. These are:

The subject domain: concerns itself with information of the real world. Focus is
on physical entities or abstract concepts such as persons, parcels, roads or
legislations.

The interaction domain: Concerns itself with the way information in the infor-
mation system is to be presented and perceived by the system users.

The implementation domain: Concerns itself with the low level implementation
of information systems. Focus is on data, communication protocols, data
access and algorithms.

A top-down approach to information systems modelling begins with the analy-
sis phase and the study of the real world with the aim of creating a subject domain
model. Then the analysis phase moves on with the user interaction modelling, and
ends up with the design of the implemented system. In the GIS literature, we have
seen the opposite, i.e. a bottom-up approach. First the data model has been de-
signed, and then the user has to fit the real world into the confines of this model.
The same trend can be seen in the suggested spatiotemporal data modes such as
the space-time composite vector model [LC88] or the event oriented spatiotempo-
ral model [PD95]. In general terms, focus has been on the data rather than on the
information.

2.3 Structural Modelling and the Time Dimension

2.3.1 Entity Relationship Models

The Entity Relationship model, or in short the ER-model, developed by Chen
[Che76] was not the first language for semantical data modelling, but it certainly
became the most popular one. The main reasons for its popularity is the simple di-
agrammatic representation and the easy transition to tables of relational databases.
Although the intension of the ER-modelling language was to describe the structure
of (relational) databases, the ER-language is also appropriate for modelling general
knowledge about the real world (i.e. not only the part to be stored in the database).
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Figure 2.1: A sample ER model describing cities and countries of the world

There are two basic constructs of the ER-model: entities and relationships.
Chen defined an entity as ‘a thing that can be distinctly identified’ and a relation-
ship as ‘an association among entities’. This wide definition is a strength of the
ER-model. Each entity is characterized by a set of attributes which is common to
all entities of the same type.

Consider a temporal database of countries and cities of the world. In this model
countries are bounded by borders and coastlines. A coastline may also bound small
islands, hence a country may be associated to more than one coastline whereas one
coastline may bound several countries. Borders separate two countries, and each
country has a capital and a number of other cities. Figure 2.1 shows an ER-diagram
of this schema.

However, for modelling concepts in the real world, the ER-language has some
shortcomings. One problem is the lack of support of attributes in the original
language. It is therefore common to see the the EAR-model (entity-attribute-
relationship) in the literature. Other extensions, such as the EER model (extended
entity-relationship) also includes concepts such as sub-typing and association; con-
cepts that today are known from of the object-oriented model [TYF86].

2.3.2 The ERT language

A natural consequence of the increasing research on temporal databases, is the
emergence of accompanying conceptual modelling languages. Since much of the
research on temporal databases has been focused on extending the relational model,
it is not surprising that most conceptual modelling languages supporting time are
extensions to the ER or the EER-model. One such language is the ERT modelling
language (Entity-Relationship with Time) [MSW92][TLW91]. In this language,
which is based on the EER-model, support for temporal concepts has been applied
by the use of time-stamping of entities and relationships.
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Figure 2.2: An example of an ERT model showing a temporal map over Europe

The basic constructs of this language are the entity class (denoted by a rectan-
gle) which denotes a set of objects which share the same set of attributes, the value
class (denoted by a rectangle with a black corner) which is used to describe an
entity’s attributes, and the relationship (denoted by a line with small black square)
which describes the associations between an entity and a value class or another en-
tity. Furthermore, the inheritance extension is represented by a relationship with a
circular join. If the circle is solid, then the sub-classes are disjoint or total; if open,
then the sub-classes are overlapping or partial.

To implement the temporal dimension in the ERT diagrams, entity classes and
relationships may be either T- or H-marked. If an entity class is T-marked it means
that the entity only exists at certain times (or ticks) in our UoD, meaning that the
entity is undergoing temporal variation. If a relationship is T-marked, it means
that the relationship between the two entities it involves exists for only a subset
of the time (number of ticks) for which both the entities it associates exist. If
a relationship between two entities of which at least one is T-marked is not T-
marked, it means that the relationship exists as long as both entities co-exist in our
UoD.

The H-mark is used to indicate that a relationship has a historical perspective.
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This means that a relationship involvement may exist between two entities that do
not co-exist in time. For example, we may say that one person has a grandparent
that is another person, but the two persons did not co-exist in our UoD if the grand-
parent died before the grandchild was born. However, in the grandparent example,
we might want to say that the grandparent is related to its grandchild from the time
that the grandchild begins to exist. For this purpose, the TH-mark may be used.

Figure 2.2 shows an improved model of the temporal map over Europe us-
ing the ERT-language. In this model, we have distinguished between two types
of countries: monarchies and republics. For simplicity, we assume that all coun-
tries are either monarchies or republics, hence the generalization link is a solid
circle. Furthermore, we have also added names and population of cities and coun-
tries as attributes and added the T-marks wherever appropriate. Because the ERT
model both supports temporal aspects and sub-typing it is particularly interesting
in the design of an object-oriented system. Furthermore, the notation of the ERT-
language allows us to read out the relationships, as for example the relationship
between countries and its capital: A country has one capital, while a city can be
the capital of one country.

2.4 Modelling Processes

There are several reasons why it is desirable to model processes in the real world.
On is because they involve human interaction, and that these processes need to be
automated (e.g. monitoring and management of ships in a harbour), or because the
process is to be simulated in the computer (e.g. the melting and accumulation of
glaciers).

This section presents two modelling languages that belong to the functional
perspective, viz. data flow diagrams and demos activity diagrams.

2.4.1 Data Flow Diagrams

There are two commonly used notations for data flow models. One was proposed
by deMarco [DeM78] and the other was proposed by Gane and Sarson [GS78]. The
two languages contain exactly the same concepts, but provide different symbols for
them. For practical reasons, we use the notation of Gane/Sarson, which is shown
in Figure 2.3.
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Figure 2.3: The functional perspective: Symbols of the DFD language

Data flow diagrams have many applications in STIS. In contrast to the ER-
diagrams they do not show how things are, but how things are done or how things
happen. This is valuable informations in STIS.

Consider that a building department is maintaining a database for all buildings
in a municipality. In order to set up new buildings, pull down or renovate existing
buildings, or to change the use of buildings, the proprietor has to apply and get
permission from the department to do so. The application is received and verified
for conformance with the area development plan, and notifications are sent out to
the neighbours for reactions. Upon approval (or rejection) of the application, the
necessary documents are sent back to the proprietor. When a new building is built
or an existing is changed, it is inspected to verify that it conforms with the original
application and the final position of the house is surveyed. In some cases, houses
get damaged (partly or totally) due to fire or other natural causes (e.g. landslides
and avalanches). Notification about this is received from the insurance companies.
This way, the building department will have a complete inventory of all buildings
in their municipality at all times.

Figure 2.4 shows a data flow diagram of the system described above. In this
diagram the external entities are the proprietors, their neighbours and the insur-
ance companies. The main data store is the building database, but also a cadastral
database and an area development plan is needed. The latter two databases may be
maintained by other departments. The processes shown in the figure are described
as follows:

P1: Receive application: An application is received from a proprietor. The ap-
plication may be either for setting up a new building, to extend or restore an
existing one, or to change the use of a building (e.g. to change from private
residence to an office building). The application is checked whether all nec-
essary documentation has been included, and if it is OK, it is forwarded for
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Figure 2.4: A data flow diagram of the activities in a municipal building department
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processing.

P2: Handle application: In this process, the neighbours to the building site are
determined from the cadastral database, and a notification is sent out to them.
If the neighbours have objections, they will have a deadline to make these.
If there are no objections and the application is in conformance with the area
development plan, it is accepted, and forwarded for final notification to the
proprietor. If a new building or a wing is to be set up, preliminary coordinates
for the position of the house is put to the building database.

P3: Answer application: The application is accepted, and the necessary certifi-
cates and permissions are issued to the proprietor.

P4: Final control: When the building is finished, it is inspected in order to verify
that the building, restoration or change in use is according to the application,
and the original intentions.

P5: Survey Building: If a new building or wing has been set up, the new building
is surveyed and its exact location is determined. The results are stored in the
building database.

P6: Handle message on damage: Sometimes, houses are damaged, partly or to-
tally, due to fire, landslide, avalanche, or other reasons. Notification about
this is received from the respective insurance companies, and the building
database is updated accordingly.

In the diagram, it is easy to see which processes contribute to the updating of
the databases, and which processes only need to read information from databases.
By further specification, it is also possible to describe exactly what information is
updated by these processes.

2.4.2 Demos Activity Diagrams

Another application of the functional perspective is where real world processes are
to be simulated in computers. In fact, computer simulation is itself an active re-
search field, and designers of STIS may have a lot to learn from this field. An early
simulation language, Simula [DN66], has been extended with a package called
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Figure 2.5: Demos activity diagram for a harbour

Demos [Bir79] to ease the implementation of simulation programs. Demos pro-
grams, can be visualized using so-called Demos activity diagrams, and the original
notation has been extended a number of times through [Bir79] and [HR85].

An activity digram shows how an object enters the UoD, goes through different
activities, acquiring resources, cooperates with other objects, interrupts other ac-
tivities or is interrupted by other activities, before it leaves the UoD. In addition to
activities, activity diagrams also incorporate entities such as resource objects, bin
objects, conditionals and wait activities.

Figure 2.5 shows a sample activity diagram for a harbour which is managed
by the harbour administration by the help of an STIS. The harbour administration
has two jetties and three tug boats which are modelled as resources (indicated by
circles) . Two tugs are required to dock a ship whereas one is sufficient when a
ship is leaving. When a ship arrives, i.e. enters the UoD (indicated by a lower half
circle) it must acquire two tugs and one jetty. If these resources are not available,
the ships have to wait until they become available, and they are served on a first
come, first served basis. The processes of the system, such as the docking process,
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Figure 2.6: Temporal behaviour of an attribute

unloading/loading process and the undocking process are indicated by rectangles,
and these processes are considered to take some arbitrary amount of time. When
the docking is complete, the two tugs are released, and the unloading and load-
ing process can begin. When the loading is complete, one tug is acquired before
the ship can leave. The ship is towed to sea, upon which the jetty and the tug is
released, and the ship can leave the UoD (indicated by a upper half circle).

The example given above, only illustrates a subsets of the concepts of the de-
mos activity diagrams. Nevertheless, the demos activity diagrams also have a lot in
common with the behavioural perspective; the example above could to some extent
also be modelled using Petri-nets.

2.5 Modelling Behaviour

Understanding behaviour is one of the most fundamental issues of STIS engineer-
ing. Most spatiotemporal models so far are extensions of existing data models, and
a common solution is to simply timestamp the data when it is updated. Such sys-
tems, are then only capable of representing changes as sudden events. However,
we know that many changes in the real world have duration. In general, features in
the real world exhibit a wide range of temporal behaviour. In general, three basic
types of behaviour have been identified [SS93] [MP93]. These are as illustrated in
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Stepwise constant: A feature of this type is considered to be static and changed by
events. These events may be instantaneous, such as the division of a parcel,
or they may have duration such as the building of a road, or the change in
position of a ship that is sailing from one harbour to another.

Continuously changing: Features of this type are always considered to be in a
changing state. The population of the country or city, or the expansion and
retreat of glaciers are examples of such behaviour

Discrete values: Features of this type are considered to be associated with specific
times or time intervals. The amount of precipitation per day, and the gross
domestic product of a country are examples of such behaviour

To model temporal behaviour, it seems natural to use a language such as State-
charts [Har87] or Objectcharts [CHB92]. However, these languages are similar to
finite state machines which are based on the idea that the system is always in one
state and that transitions between each state are instantaneous. Although, many
objects in the real world exhibit such behaviour, it would be of great value if we
could model gradually changing objects as well. However, if we introduce the
state of change as a distinct state, we may obtain a generic Statechart model (i.e. a
meta-model) for spatiotemporal objects as shown in Figure 2.7. According to this
model, an object is either alive or it is dead. An object that is alive, may die and
enter the state of being dead and later become alive again by a reincarnation event.
If the object is alive, it may either be in a static state, or in a state of continuous
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Figure 2.8: The story of a land area (above) shown in the history graph notation
(below)

change. An object that is in a changing state may stabilize and enter the state of
being static, and then later it may start to change again. An object that is in a static
state may change instantaneously and continue to be in the static state.

It was the idea of this model that led to the definition of the history graph no-
tation [Ren96]. In this language, which in some way is similar to Petri-nets (which
also is a modelling language that belongs to the behavioural perspective, [Pet62]),
the objects of a data set may be described through a series of consecutive states
(i.e. static states) and changes (i.e. changing states). The states are denoted by
a square rectangle, while the changes are denoted with boxes with circular ends.
Both the states and changes are associated with a time interval, and the boxes are
stretched to mimic the time interval they are associated with. Objects that change
suddenly would then be described by transitions with zero duration (i.e. events),
while objects that change continuously would be described by version with zero
duration (i.e. snapshots) describing intermediate states. An object that is dead, is
denoted with a rectangular box with a dashed outline. Figure 2.8 shows a sample
story where a region is split and merged. Since the changes in this story are con-
sidered as sudden events, the transitions are shown as circles. A similar language
has been introduced in [HE97], but it does not consider changes as distinct entities.

Studying Figure 2.8, one can identify a number of distinct change types, such
as the splitting and merging of objects. As illustrated in Figure 2.9, a total of seven
different types of changes were identified. These are as follows (a refinement of
these change types can be found in [HE97] and [CT95]):
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Figure 2.9: Seven basic types of changes (Shown in history graph notation)

Creation: An object is created.

Alteration: An object is changed or modified.

Destruction: An object is destroyed or removed.

Reincarnation: An object that previously has been destroyed or removed is rein-
troduced, possibly with a new state and location.

Split/Deduction: An object is subdivided in two or more new objects or one or
more objects is deducted from an existing object.

Merge/Annexation: Two or more objects are joined together to form a new object
or one or more objects are ‘swallowed’ into another object.

Reallocation: Two or more objects are merged together and two or more different
objects result from the change.

Although the history graph notation helps us understand temporal behaviour in
particular cases, it does not allow us to describe the general behaviour of certain
types of features. For example, changes to a country can be one of the following
types:

1. Two countries may merge to form a new country, e.g. East and West Ger-
many merge to form Germany.
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2. One country splits to form two countries, e.g. Czechoslovakia splits to form
the Czech Republic and Slovakia.

3. A region in one country gains its independence and forms a new country,
e.g. Estonia, Latvia and Lithuania withdraw from the Soviet Union.

4. A country is annexed into another country, e.g. Iraq invades Kuwait.

5. A border between two countries is adjusted according to an agreement bet-
ween the two countries.

6. The population is changed. Apart from the continuous change of population
by natural birth and mortality, all of the events above will have an effect on
the population of the involved countries.

7. When changes occur in territories, some cities will change country, and the
involved countries will have a jump in population.

8. The capital of a country is moved to another city, e.g. Germany moves the
capital from Bonn to Berlin.

9. A country changes name, e.g. the Soviet Union becomes Russia.

On the basis of these changes, one can make transition specifications. Formally
in a Statechart, a transition specification comprises the initial and the final state of
the transition and the service name for the transition, together with a precondition
and a postcondition.

A problem with the Statechart is that it poorly expresses the interaction bet-
ween objects, e.g. how can we comprehensively describe a deduction. A deduction
generally means the creation of one object and the alteration of another. Obviously,
such issues have not been addressed, although the history graph notation to a large
extent can assist in such specifications.

2.6 Object-Oriented models

A popular approach in GIS modelling in general but also in spatiotemporal mod-
elling is the object-oriented approach, and a number of data models have been
presented [RMD94] [Ham95] [Wor94b]. However, the object-oriented model has
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Figure 2.10: The most common symbols in the OMT-language

been used in GIS development as a mere wrapper around the vector model, rather
than a fundamental approach according to which geographical knowledge could
be modelled. Apart from the advantages of the object-oriented model in traditional
GIS, such as increased modelling power. Käfer lists four main advantages of an
object-oriented model in a temporal database [KRS90]:

1. The complete history of an entity can be encapsulated into one single object.

2. Since the complete history of an entity can be represented as a single object,
queries become less complicated, because they do not consider the disper-
sion of the entity over many tuples.

3. Since complex object queries are executed efficiently, the corresponding
temporal data should be handled efficiently as well.

4. Handling of temporal and non-temporal data can be done in a uniform way.

The object-oriented approach provides concepts as object class, association,
aggregation, and generalization. Several object-oriented modelling languages exist
[Boo96] [Mar93] [EHS93], but the language of the object modelling technique
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(OMT) [RBP+91] seems to be the most popular one. The most common symbols
of this language is shown in Figure 2.10.

Some research has been seen where the object-oriented model has been used
to design a temporal data schema, without embedding temporal constructs into the
modelling language itself. One model is the multimodel and metamap schemas
by [Mis93] [BS93], where spatial and non-spatial information can be accessed via
parameters such as time.

Since the early 1990s we have seen an increasing activity in the design and con-
struction of temporal object databases. Some ongoing research deals with incorpo-
rating concepts from these models into an object-oriented modelling language. Of
particular interest is MADS (for Modelling of Application Data with Spatiotem-
poral features) which is described in [SPZ98a] and [PSZ+98]. MADS is so far
the most comprehensive modelling language for geographical and spatiotemporal
information within the object-oriented paradigm. MADS provides the standard
object-oriented concepts which can be marked with various icons to indicate cer-
tain spatial and temporal properties of these concepts.

A simple ERT-like extension of the OMT can also be found in [Ren99a]. Fig-
ure 2.11 shows an improved model of the countries of the world. Here, we have
hidden the attribute information, but added a new type of objects, viz. multinational
organizations. A multinational organization has a number of member countries,
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and over time it may receive new members and existing members may secede from
the organization. A country can also be a member of several such organizations.
The markings on this figure are defined as follows: a class that is T-marked has
properties that varies over time. An object class that is S-marked is a spatial ob-
ject and thus has a location. If an object class is ST marked, it means that the
location of such objects may also vary over time. Hence, an object class may be
both T-marked and S-marked, but not ST-marked if it has a static location, but
has other properties that vary over time. Subclasses inherit all markers from their
superclasses, and are only marked if additional properties that deserves a mark are
added to the object class.

A generalization link is T-marked if the instance of the subclasses may change
in type, e.g. if a monarchy changes to become a republic. An aggregation or as-
sociation link may be T-marked if the link only exists during a part of the time
for which both involved objects co-exist. If, on the other hand, a link between two
temporal object classes is not T-marked it means that the link exists as long as both
objects co-exist. If an aggregation or association link is S-marked it means that the
link is spatially dependent, i.e. is a topological link. Thus, a city can only be related
to the country in which it is topologically inside.

Objects may have several properties that vary independently over time. Some
properties may vary suddenly, such as the location and name of a country, whereas
other properties may vary continuously, such as the population of countries and
cities. Additional markers can be added to attributes if they are provided in the
model.

2.7 Rules, Knowledge and Business Policy

In cartography, rules have mostly been applied to issues related to cartographic
generalization. In conceptual modelling on the other hand, rules can be used to
express constraints on conceptual schemas (such as cardinality constraints).

Most often, such rules are implemented directly in source code. In information
systems, this represents potential problems since business policy may change over
time, making current information systems obsolete [MNP+91]. Historical data
should always be viewed in context with the rules that were current at the time in
question. For example, to become a member in the EU, a country has to present
a national budget with a deficit that is less than a certain percentage of the gross
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domestic product. However, many countries that already are members of the EU,
did not meet this requirement, but they still became valid members because the rule
did not exist at that the time when they became members.

A possible solution is to explicitly express rules by an external rule language
(ERL) and store them together with the system. There are two approaches to this
problem. One is to store the rules in a temporal database, such that rules can easily
be obtained for specific points or periods of time. Another approach is to let the
time validity be an inherent part of the rule if the rule is expressed as

whenhtimeiifhconditionithenhconsequencei

The rule can then be viewed as describing some logical constraint on the model,
which must hold at every moment (or tick) whilst the information system is active
[MNP+91].

Any system of rules must contain a set of predefined predicates that are under-
stood by the system. In tense logic, four temporal predicates have been proposed
[RU71]. These are as follows:

F (p) : it will be that p;

P (p) : it has been that p;

G(p) : henceforth, always p;

H(p) : hereto-forth, always p;

where p denotes any proposition. Similar constructs have been proposed by Alagic
[Ala97] in a temporal constraint language as a high-level, declarative database pro-
gramming paradigm for object-oriented databases.

In the field of artificial intelligence, rules have played a central role in the
representation of knowledge about the real world. McCarthy’s situation calculus
[MH69], has been a major inspiration source for other research in this area. In this
theory, a situation is defined to hold the complete state of the universe at an instant
of time, and the set S is defined to contain all situations including both real and
imagined situations. A fluent is a function from S into S or into the set of booleans
B = ftrue; falseg. This means that a fluent at(x; p; s) is true if an object x is at
the position p in the situation s. Using the tense operators above, we can express
causality. In order to express that in a situation s, if a person x is located at position
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p and it is raining at position p, then x will become wet, we could write:

8p8x8s(raining(x; s)^ at(x; p; s)! F (wet(p; s0); s)

Allen [All84] presents a further development of the situation calculus where
events, processes, activities and causality are expressed as predicates occurring
over time intervals along with binary operators over temporal intervals [All83].
Consequently, if an object x moved from location p1 to a location p2 over a time
interval t, this is expressed as the formula

OCCUR(CHANGE POS(x; p1; p2); t)

2.8 Concluding Remarks

This article has presented a selection of conceptual modelling approaches and
demonstrated some of their applications in the development of an STIS. This has
made it possible to describe complex aspects of real world systems. A simple
basic model has been presented, shown in Figure 2.7, that recognizes three basic
states of objects. On top of this underlying meta-model, there is a need to create
application-specific domain models which precisely describe a domain in the real
world. This model can be created by using ERT-models or object-oriented models
together with data flow diagrams, behaviour models and rule-based constraints.

By using conceptual modelling languages, it is possible to describe and uncover
the characteristics of real world systems in a way that is understandable even to
non-experts. Thus, a broader audience can participate in the development of a
system and the users will have a system that more closely represents their own
concepts of reality.
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Chapter 3

CONCEPTUAL MODELLING OF

SPATIOTEMPORAL DATA USING GRAPH

STRUCTURES

3.1 Introduction

The need for representing historical information in databases has led to the idea of
temporal databases, databases where time is an explicit dimension. Recent research
in temporal GIS has shown that modelling real world phenomena in space and
time is a non-trivial task, and several different data models have been presented.
To be able to construct efficient temporal databases, it is critical to understand
temporal phenomena in the real world. For this purpose, conceptual models are
necessary since they provide a vehicle for communication and a basis for design
and implementation [SK96].

The model introduced in this article has much in common with state-transition
diagrams and Petri-nets ([Pet62]). The focal point of this model is the dichotomy
between states and events, and the durational aspects of these concepts.

3.1.1 Change patterns

Changes on spatiotemporal objects may occur at any level, on the attribute level
as well as the geometrical and topological level. Most commonly, changes made
by humans are considered as events, e.g. a new road is opened, a new building is
built, or parcel has been divided in two. It is common that such events are consid-
ered as instantaneous occurrences, but many of the changes in the real world are
results of continuous processes such as glacial fluctuations, expansion of desserts
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Figure 3.1: Types of changes in an attribute

and erosion of rivers. Although most types of changes are either of a sudden nature
or are results of continuous processes, some types of changes also fall in a category
between the two.

Entities can be divided into several categories according to their temporal be-
haviour or change patterns. As illustrated in Figure 3.1, three main types of be-
haviour can be identified: stepwise constant, discrete and continuous [SS93]. Sta-
ble values are exposed to instantaneous events and have stepwise constant values.
Discrete values are collected on a regular or irregular time intervals and contains
values that have been accumulated over this interval (e.g. daily rain fall). Con-
tinuously changing values can be divided into three sub-categories: uniformly,
smoothly and irregularly changing values [MP93]. Additionally, some entities are
static and never change while other entities may be measured or depend on time
itself [Lan92]. An example of the latter type may be a scheduled opening date for
a new road, or the opening hours of a ferry.
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Figure 3.2: The relationships between events and mutations, map states and object
versions in a spatiotemporal system (from Langran 1992)

3.2 Events and States

3.2.1 The topology of time

Basically, modelling a temporal system is about managing objects and their chan-
ges. As stated, the term ‘event’ is usually considered to denote some instantaneous
occurrence that transform objects from one state to another. However, one event
may transform several objects and their subcomponents into new states. As illus-
trated in Figure 3.2, Langran therefore suggested to distinguish between map state
and event as terms pertinent to an overall database- or map-level, and versions and
mutations as terms pertinent to the object-level. This relationship between ver-
sions or states and mutations or events describe a temporal topology where tempo-
ral neighbours are predecessors and successors of each other. Each object forms a
line starting with the object’s birth, going through its life cycle which consists of
a series of contiguous versions separated by mutations and eventually ends in the
death of the object [LC88].

This dichotomy between events and states (or versions and mutations) is funda-
mental in temporal data modelling. Consequently, there are two main approaches
to data modelling, the state-based approach where the history of an object is
viewed as a sequence of states or versions, and the event-based approach where
the history of an object is viewed as a sequence of events or mutations. This ar-
ticle is also concerned about the durational aspects of states and events, and we
will show that both states and events can be associated with durations of time.
However in this article, we use a different terminology than Langran. We use the
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Figure 3.3: The story of an area, and the temporal relationships between objects in
the story

term object-state and map-state (or database-state) for Langran’s version and state,
respectively, and the terms event and change for Langran’s event and mutation, re-
spectively.

3.2.2 Representing The State-Based Approach

Consider the area depicted in the top of Figure 3.3. At time T1 the area consists
of one single object, region A. At time T2, A is split into two regions, B and
C. Later, at time T3, B is split into E and D, and finally at T4, C and E are
merged into a new region F . As shown in the bottom of Figure 3.3, this indicates
a general structure of a spatiotemporal objects where the states of each object are
linked together in a directed acyclic graph (DAG).

This graphical view of a story focuses on the states of each object and will be
referred to as the state-based approach. The strength of this approach is that it
is easy to obtain time-slices at certain times as each object state may be stamped
with a time interval. The disadvantage of the approach is that it is not possible to
obtain direct information of what happened or why it happened. In other words,
the changes can only be obtained in terms of their effects rather than as explicit
information. This means that the state-based approach is strong on queries like
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Figure 3.4: The relation between changes in the event-based approach

‘What was the state of : : : ’ and weak on queries like ‘What happened to : : : ’

3.2.3 The Event-Based Approach

An alternative to the state-based approach is the event-based approach, which rep-
resents the data in terms of events rather than states. With this approach, the state
of an object can be obtained by tracing through the events associated to that object.
Langran outlines such an approach called the amendment vector approach where a
base state (or a final state) is overlaid with amendment maps, which represent the
events in the database [LC88]. Another similar model (ESTDM) is implemented
by Peuquet and Duan [PD95]. In this raster model each event is represented by a
compactly stored change image.

Looking back at the story outlined in Figure 3.3, an event-dependency graph
may be created. The graph that would look like the one if Figure 3.4 is a bit harder
to interpret, but the changes labelled C1 through C4 are as follows:

C1: A created.
C2: A is split into B and C.
C3: B is split into D and E.
C4: C and E merged into F .

With this approach, the states of each object can be obtained for any time. It
cannot be obtained directly, but computed from an initial state and summing up
all the events applied to the object. The advantage of this approach is that explicit
information about what happened to the objects is stored in the database. Data
models based on this approach should be capable of of tracing events both forwards
and backwards. Additionally a current state database should be given to provide a
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Figure 3.5: The different objects and the events that relates them

complete map of the most current situation and to provide shorter paths to recent
and usually more frequently accessed states.

3.2.4 Combining Events and States into One Graph

Although the event-based approach and the state-based approach both have their
advantages and disadvantages, the two approaches complement each other. Hence,
it is natural to suggest that temporal databases should manage both events and
objects in their data sets. Therefore, we will combine object states and changes
into one graph as shown in Figure 3.5. This graph clearly illustrates the dichotomy
between states (shown as rectangles) and events or changes (shown as circles), and
will be called a history graph. The primary application of this graph is to describe
a limited extent in time and space called a story.

As can be seen from Figure 3.5, three types of events can be identified: C1
which creates or adds A, C2 and C3 which split one objects in two, and C4 which
merges two object into one. Generally, four more types of changes can be identified
by studying the number of ‘input’ and ‘output’ states of the event. As illustrated in
Figure 3.6, this gives us a total of seven different types of changes:

Creation: A new object is created.

Alteration: An object is modified, either by change in attribute or by change in
geometry.

Destruction: An object has been destroyed and does no longer exist in the uni-
verse of discourse. All objects that are destroyed are potential items of a
reincarnation.
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Figure 3.6: The seven basic classes of changes

Reincarnation: An object that has been destroyed, is reincarnated. A reincarna-
tion can only succeed a destruction, and has only one succeeding object state.
This is a type of event that can, if omitted, be replaced by a destruction and a
creation of a entirely new object. In that case, there is nothing that relates the
two objects to each other, although we are speaking of the same real world
entity.

Split: An object is subdivided in two or more fragments. One of the succeeding
objects may have the same identity as the original object indicating that the
other successors were deducted from the original object. To indicate this,
the edge between the change and the succeeding state may be indicated with
a fat line, while normal thin lines indicate creation of new objects with new
identities.

Merge: A new object has been constructed from a number of existing objects.
The identity of the object may be new, but the new object may also inherit its
identity from one of the former objects, indicating that some of the preceding
objects are annexed into the new object. Again, persistence of identity can
be indicated by drawing the edge using a fat line.

Reallocation: A group of objects have been changed and reallocated in a different
configuration. Alternatively, it is possible to represent such an event by two
consecutive merge and split events. Again, drawing some of the edges using
a fat line may indicate persistence of identity.

As can bee seen in Figure 3.6, the basic difference between these event types



60 CHAPTER 3. HISTORY GRAPHS

L1

L2

L3
L7

L1

L2

L3

L4 L5

L7

L8
L1

L2

L3

L9

T2-T3 T4->->T1

L6 L6

L4
L1

L3
L5

L1

L3

L9

E1

E2

E6

L8

L2

L7

L6

L2

T1 T2 T3 T4 t

E3

E4

E5

E7

Figure 3.7: Three stages in the history of a road, and the associated history graph

is the number of preceding and succeeding states. While the creation has no pre-
ceding state, splitting, destruction, and alteration requires exactly on predecessor.
Merging on the other hand requires at least two predecessors while a reincarnation
can only precede a destruction.

3.3 Extending the Model

3.3.1 Events do have Duration

The conceptual model that emerged in the preceding section is based on the as-
sumption that events are instantaneous and therefore have no duration. Generally,
this is not the situation, e.g. it may take several years to build a new road. Although
in many applications the opening date is sufficient as a ‘creation date’, other appli-
cation would take advantage of information that indicates construction or planning
activity in the period before the opening.

The natural way to accommodate this in our model would be to apply duration
to the events as well. In other words, not only the objects are time-stamped, but
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also the events. Consider the roads in Figure 3.7. Between T1 and T2 a new road
segment is built including a new crossing of L2. The new road is opened at T2
and the situation remains constant until T3. From T3 to T4 the segment L8 is
destroyed merging L4 and L5 into a single line: L9. The history graph of this
story is given at the bottom of Figure 3.7. Here, the event of building the new road
segment composed of L6 and L7 is represented as the changes C1 through C5.
The destruction of the small segment between the new and the old road segment,
in the figure labelled L8, is an event represented by the changes C6 and C7.

This story is given at the geometric level with line segments as the main entity
type. A higher level story based on the concept of whole roads can be presented
as well. That is a matter of decomposition of elements and will be described in
Section 3.4. However, we have shown that events that have duration can be mod-
elled using history graphs by extending the event-oriented paradigm. We do this by
drawing the events as oval-shaped boxes, and the states as rectangular boxes. The
shapes are stretched along the horizontal time line to mimic the duration of these
entities.

3.3.2 Continuous Processes

So far, we have assumed that changes in the world occur in the form of events that
have a finite duration in time. However, there are also changes in the world that
are caused by continuous processes. The fluctuations of a glaciers, coastal erosion,
air pollution and weather are examples of such processes. The most natural way to
model these phenomena is to record states at regular or irregular intervals, and to
interpolate between two states in order to find intermediate states.

In fact, such processes can easily be described by the model already outlined
in the previous sections. In opposition to the event-based way of thinking where
the states span all space in time and the events have zero duration, continuous
processes can be described in a diametrically opposite way, by states having zero
duration and changes spanning all space in time. However, at this point we need
to extend the terminology a little. We suggest using the term process instead of
events, but consider the term change still applicable. Furthermore, we use the term
snapshot to denote a state that have no (or very short) duration.

For example, consider a melting glacier as illustrated in Figure 3.8. Three snap-
shots of the glacier(s) are given at times T1, T2 and T3 respectively. We can see
that, as the ice melts, the glacier disintegrates into smaller ice patches. The history
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Figure 3.8: Three stages in the melting of a glacier

graph shown in the figure shows the intermediate states, or the snapshots, depict-
ing the situations at the actual times. Although the snapshots have zero duration,
they are drawn as narrow rectangles. This is mainly due to graphical reasons, but
one may also state that the rectangle representing the snapshot gives a sufficiently
accurate description of the state within the time interval indicated by the extent of
the rectangle.

There is also another modelling issue worth noticing at this point. Looking
back at Figure 3.7, we see that the changes C1 throughC5 are all part of the same
event of building a new road, and that each change is associated with the same time
interval as the main event. On the other hand, the process in Figure 3.8 includes
C1 as well as C2 and C3 and spans the full history of the objects being involved. In
other words, each of the changes is associated with a subinterval of the total time
interval that the main process is associated to.

Additionally, the story of Figure 3.8 also reveals a number of questions related
to topology: When did A split into B and C? and When did E separate from C?
From the snapshots, we cannot exactly tell, but satisfactory approximations can be
computed using interpolation methods.

3.3.3 Sudden Changes in Continuous Processes

Many types of features may change continuously in a smooth and regular manner,
but some may also experience abrupt changes of a sudden nature. The glaciers in
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the previous section illustrates this where we see a sudden change in topology of
the ice patches. Another typical example of this is sudden changes in population.
Imagine the population of Russia (or the former Soviet Union). At a large scale, we
may assume that the population changes regularly and smoothly, but when e.g. the
Baltic counties separated from Russia, Russia experienced an instantaneous jump
in its population.

Consider the situation illustrated in Figure 3.9. It shows a parcel situated by
a river bank that is continuously shrinking due to erosion by the river. Then at a
certain point, the parcel is split in two, and at the time of the split, geodetic surveys
was made to determine the coordinates of the new boundary line. At the same time,
the river bank was measured to determine the current size of the parcels.

In order to model this using history graphs, we need two sets of states to de-
termine the situation immediately before and immediately after the division of the
parcel. These states are in principle associated to the same time, the time when
the split occurred. But between these two sets of states, there is an event, also
with no duration that represent the splitting of the parcel. Hence, as illustrated
in Figure 3.9, such a change is modelled using a snapshot - instantaneous event -
snapshot sequence where all three elements are associated withe the same time, the
time of the sudden change.
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Figure 3.10: Both polygon A and polygon B are changed as a consequence of the
event that moved the line between them

3.4 Compound Objects

Generally, there are two types of spatial objects in a spatial database. On the one
hand, there are atomic objects such as points and lines, while on the other hand
there are compound objects that consists of, or are formed by other objects such as
polygons and volumes. So far, we have dealt with objects at the more individual
level. In this section, we are going to investigate the implication of topological
interrelationships between objects.

Using object-oriented terminology, if two objects are tightly bounded by a part-
whole-relationship, it is called aggregation, while the term association is used for
more loosely related objects [RBP+91]. In a polygon mesh, a polygon can be seen
as an aggregation of the nodes and the lines surrounding the area. A higher level
object, such as a complex area, may again be aggregated from several polygons,
one (or more) describing the outer bounds, and zero or more others describing holes
in the area. Yet, one line can be part of two polygons, and both these polygons are
thus topologically associated to each other.

Consider the line L in the story pictured in Figure 3.10. Because the line is
altered, the polygons of which the line is part of, is also altered. There are two basic
ways to represent this in a history graph. One method is to treat the line and the
two polygons as individual objects placing them side by side in the graph as shown
in the figure. The other approach would be to try and show the interrelationships
between the objects in the same graph. To demonstrate this, we will revisit the
example in Section 3.2.2 and have a closer look at the relation between the lines
and the patches (i.e. polygons).
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Figure 3.11: The story from Section 3.2.2, now with numbered lines

As we can see from Figure 3.11, polygon A is formed by a single line L1. To
split A into B and C, L1 is split into L2 and L4, and L3 is added. To split B into
E and D, L4 is split into three pieces: L5, L6 and L8 while L7 is added. And
finally, to merge C and E into F , L3 is removed and L5, L2, and L6 are joined
into L9. As the figure illustrates, the history graph can be quite complex. If we
were to include the relationships between the patches in the same graph (shown as
dashed rectangles), the graph would be virtually unreadable. It is therefore wise to
present each structural level of the data set in separate graphs.

As another example, let us revisit the example in Section 3.3.1 illustrated in
Figure 3.7. Assume that the road is constructed from several line segments. That
is, at time T1 road 1 (R1) consists of the segments L1 and L3, and road 2 (R2)
consists ofL2. From T1 toT2, R1 includes the new segmentL6 andL7 in addition
to the old segments L1 andL3. The old part is now defined as a separate road (R3)
consisting of L4 and L5, while R2 consists of L2 and L8. After T4, when L8 is
removed, R2 consists of L2 only, while R3 consists of L9 which is the join of L4
and L5. As the history graph in Figure 3.12 shows, R3 is seen as being separated
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Figure 3.12: A higher level view of the story outlined in Section 3.3.1

from R1 in a splitting process.

3.5 Temporal Topology in the Data Structure

Topology is the study of those properties of geometrical forms that remain invariant
under certain transformations such as bending, stretching, etc. (Webster’s dictio-
nary). In other words, we are speaking of relationships between objects such as
neighbour of, overlap, disjointness and insideness. Temporal topology would in-
clude time as another spatial dimension and involve temporal relationships between
objects. Neighbours in time would either be predecessors or successors while var-
ious forms of co-existence are relevant relationships between objects that are not
temporal neighbours [All83].

The advantage of the history graph is that these temporal relationships can
be represented explicitly in the data structure. Temporal neighbours are states of
objects that are linked together by a single event or change. Even relationships
between events and changes can be determined as these are related through the
states of the objects (Figure 3.4).

The model that we have presented in this paper is primarily a conceptual model,
but by using abstract data types or an object-oriented programming language, it
is possible to implement the graph structure. The advantage of this approach is
that the programmers job is simplified as the data structure can be visualized in
a history graph, and that the temporal topology is explicitly embedded in the data
structure. Price [Pri89] have implemented a temporal cadastral data structure based
on parcels and transactions as abstract data types. He also accommodates the
persistence of identity throughout a transaction.

Using the object-oriented methodology, it is possible to take advantage of in-
heritance when implementing the model. Each of the seven types of changes may
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be implemented as a different subclass of a generic change class.
However, the question is, how will such an implementation perform? It is

reasonable to believe that it may perform well if equipped with proper indexing
methods providing short accessing paths to the data. Moreover, an implementation
based on both processes and states should be well suited for most types of queries,
not having the deficiencies of the event-based or the state-based model. Hence,
implementability must be further investigated and prototypes must be tested to
determine the performance of the models.

3.6 Concluding Remarks

In this paper a general conceptual model for spatiotemporal data, called history
graph is presented. The model is useful to visualize temporal relationships between
objects and their states, and may therefore aim at solving specific problems at hand.
However, there are more issues to be studied, and the model may not be suitable
to explain all issues. It is reasonable to say that the model is fairly crude, and thus,
it is necessary to extend the model even further to accommodate other relevant
issues. This will also bring us closer to implementing the model using abstract data
types or an object-oriented programming language. Also, further research must be
done to obtain suitable indexing methods in three-dimensional, and possibly four-
dimensional, space designed for spatiotemporal data. Langran have implemented
a model called the space-time composite model and tested it with a number of
indexing methods [Lan92]. It will be worth comparing Langran’s result with the
results of a history-graph based implementation.
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Chapter 4

A FRAMEWORK FOR TEMPORAL AND

SPATIOTEMPORAL MODELLING BASED

ON SET-THEORY

4.1 Introduction

The set-theory provides the most general and basic concepts of mathematics and
applications of computer science. The relational database model is based on the
set-theory, and it is likely that this, in turn, is the key reason to the success of
relational database systems today. The set-theory also plays an important role
in object-oriented database systems and in spatial modelling. In the latter case
through the branch of set-theory known as point-set topology.

However, when the need for temporal database theories emerged, these the-
ories were extended from the corresponding non-temporal database theories. In-
stead, we suggest that such theories should be based on the temporal set-theory
in the same way that snapshot databases are based on the set-theory. We believe
that a mathematical foundation for temporal database theories aids in ensuring the
comprehensiveness and a logical soundness of these theories. Unfortunately, we
could not find a temporal set-theory in the literature, so we decided it was worth
investigating it on our own.

The objective of this article is therefore to propose the temporal set-theory
and to discuss its applications in temporal databases and in spatiotemporal data
modelling. Moreover, we also propose a new term called tropology that accompany
the temporal set-theory. The term ‘tropology’ stems from the Greek word ‘tropos’,
meaning ‘to change’ or ‘to turn’. Tropology can therefore generally be defined as
the study of changes. We propose this term because we believe that a full fledged
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temporal database theory must take all aspects of time into consideration; not only
dealing with properties of objects over time, but also changes amongst objects.
Using the temporal set-theory, it should be possible to describe and define changes
and occurrences in a more formal manner.

We do not attempt to study the temporal set-theory and its properties from a
strict mathematical point of view. We are more interested in the concepts behind
the theory, and how to apply the results in the context of temporal databases and
spatiotemporal modelling problems.

The remainder of this article is organized as follows: The next section discusses
the time domain and suggest a continuous model of time where the elements are
instants. Section 4.3 introduces the temporal set theory, and Section 4.4 briefly in-
troduces extensions into the bitemporal setting. In Section 4.5 we make an attempt
to introduce tropology and to describe different types of changes, and in Section 4.6
we propose an implementational model of temporal and spatiotemporal data. Fi-
nally, Section 4.7 provides some concluding remarks.

4.2 The Time Model

4.2.1 Different Models of Time

There are many aspects to be considered when choosing a suitable time model. We
use the symbol T to denote the set of all times. Initially, we assume a continuous
model of time which according to [Ben83] is:

1. transitive, i.e. if t1 < t2 and t2 < t3 then t1 < t3.

2. irreflexive, i.e. if t1 < t2 then t2 � t1

3. linear, i.e. for all t1 and t2, either t1 = t2, t1 > t2 or t2 < t1.

4. successive, i.e. for all t1 there exists a t2 such that t1 < t2 and a t3 such that
t3 < t1.

5. dense, i.e. for all t1 and t2 with t1 < t2, there exist at least one t3 such that
t1 < t3 < t2.
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Because of the density requirement, each member of Tcan have no duration,
and the members of Tare therefore called instants. In order to compute the du-
ration of time intervals, we introduce a metric which is a non-negative number
�(t1; t2) that computes the time difference between any two instants such that:

�(t1; t2) = jt2 � t1j (4.1)

Let TR denote the continuous model of time. This model is isomorphic to the
real numbers. The continuous model is of course beautiful in the mathematical
sense, but falls short in practical applications [EGSV97]. Indeed, there are several
practical arguments for a discrete model. At least we need some kind of discrete
encoding [Sno92]. In the discrete model of time, we replace the density axiom
(axiom 5), with a new axiom [Ben83]:

5. discrete, i.e. for all t1 and t2, t1 < t2 implies that there exist a t3 such
that t1 < t3 and there is no t4 with t1 < t4 < t3. And, for all t1 and t2,
t1 < t2 implies that there exist a t3 such that t3 < t2 and there is no t4 with
t3 < t4 < t2

This axiom alone, opens up for the possibility of a start and an end point. In many
situations this makes sense. However, Axiom 4 ensures that no such end points
exist. Therefore, the discrete model is isomorphic to the integers. However, we
may imagine two discrete models of time. In the discrete instant model, denoted
Ti, each member ofTi is an instant. It is therefore obvious that

Ti � TR (4.2)

However, in the discrete chronon model, denotedTc, each member of Tc is a time
interval with a fixed duration called a chronon. Tc can therefore be looked upon as
a family of intervals from TR, such that each chronon has the same duration. The
intervals are pairwise disjoint, such that the union of all intervals equalsTR.

It is the discrete chronon model that has been adopted in the temporal database
community. This is because it has a simple semantic, and because it is intuitive
and conforming to the way people treat time in daily life. However, because we
are dealing with mathematics in this article, we will stick to the continuous model
of time, and we use the symbolTto denote the continuous time domain. However,
the theory will also apply to a discrete model of time, although we might have to
change the axiomatic schema.
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Figure 4.1: Relationships between time intervals

4.2.2 Lifespans and Time Intervals

In many occasions we are interested when a certain condition is true. Let p be a
proposition. The lifespan of the proposition p is the times for which the proposition
holds. It is obvious that a proposition may not hold for all times in Tbut some
subset of T. This subset may not be connected if the proposition holds for some
time period, then does not hold for some subsequent time period, then to hold again
at a later time.

According to [JCE+94], such a lifespan is called a temporal element and is
defined as a finite union of time intervals. However, since we are dealing with the
temporal set-theory, and since sets are said to contain ‘elements’, there is a risk of
causing confusion of terminology if a set contains elements that varies over time
(and therefore would be called ‘temporal elements’ as well). Therefore, we avoid
using this term here.

In many cases, the lifespan of a proposition may be restricted to be a connected
subset of T. Such a lifespan is called (as already indicated) a time interval. Time
intervals play an important role in the temporal set-theory. Allen [All83], has pro-
posed a set of 13 operators to describe different relationships between time inter-
vals. In order to mathematically define these, we use the notation X to denote the
greatest lower bound of the time intervalX and X to denote the least upper bound
of X . In order to not complicate matters, we assume that all intervals are closed
intervals, thus two intervals that meet have exactly one time instant in common.

Figure 4.1 illustrates Allens’s operators, whereas as the mathematical defini-
tions follows below:
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X < Y () X < Y (4.3)

X = Y () X = Y ^X = Y (4.4)

X m Y () X = Y (4.5)

X o Y () X < Y ^X > Y ^X < Y (4.6)

X d Y () X > Y ^X < Y (4.7)

X s Y () X = Y ^X < Y (4.8)

X f Y () X > Y ^X = Y (4.9)

X � Y () X � Y ^X � Y (4.10)

(4.11)

If X is a time interval, then the duration of X, denoted jXj, is the metric
distance between the greatest lower bound and the least upper bound of X. In
other words:

jXj = �(X;X) = X�X (4.12)

Since a lifespan is a finite set of time intervals, it is also possible to compute the
duration of any lifespan. Let L be a lifespan and let � be a function that transforms
a lifespan into a family of disjoint time intervals, then the duration of L, denoted
jLj is given by

jLj =
X

Xi2�(L)

jXij (4.13)

4.2.3 The Bitemporal Time Model

In databases, there are normally a difference between the time when something oc-
curs in the real world, and the time when the occurrence is recorded in the database.
We therefore distinguish between valid time which is pertinent to when facts are
true in the real world, and transaction time which is pertinent to the time when
facts are current in the database. These two times are considered to be orthogonal,
and therefore, time is said to be two-dimensional [SA86] [Sno92]. A model that
includes both valid time and transaction time is said to be a bitemporal model.
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In this article, we will both present a model which is based on a one-
dimensional representation of time (i.e. mono-temporal) and its bitemporal exten-
sion. For most of the time, the mono-temporal model will be pertinent to the valid
time dimension. When it is necessary to distinguish between the two time dimen-
sions, we use the symbol Tv to denote the set of valid times and the symbolTt to
denote the set of transaction times. Then, the set of bitemporal times is given by:

T2 = Tt�Tv (4.14)

4.3 The Temporal Set Theory

4.3.1 Background and Related Work

As we already have stated, we have not found any proposed temporal set-theory
in literature. On the other hand, several text books exist on the topic of temporal
logic or tense logic (such as [RU71] [Ben83] [McA76]), and logic often goes hand
in hand with set theory; e.g. given a predicate p(x) which determines whether some
condition holds for an object x, we can build a setA consisting of all objects which
satisfy p(x)

A = fxjp(x)g: (4.15)

In [RU71], a special type of logic, called topological logic, is discussed. Given
a topological space X and a proposition p, the expression P (x; p) is to be under-
stood as the proposition p realized at the position x. In principle, we could replace
the proposition p with a predicate p(x) where x is a position inX.

Since time is a topological space, the topological logic can be utilized in tem-
poral logic. Furthermore, the time space has also a total order, which is not entirely
the case for Euclidean space, at least for dimensions of two and higher. This has
led to the definition of four tense operators:

Fp sometimes in the future p (4.16)

Pp sometimes in the past p (4.17)

Gp it will always be the case that p (4.18)

Hp it has always been the case that p (4.19)

It is worth noticing that Gp = :F:p and Hp = :P:p.
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4.3.2 The Classic (Naive) Set Theory

The classic set theory has provided a basis for many areas within computer science,
such as database systems and programming languages. Naturally, it will provide a
basis for the temporal set theory as well. Therefore, we present a brief review of
the most basic definitions of the set-theory that we need in the development of the
temporal set theory.

� A set is a collection of objects called elements or members of the set. A set
is finite if it contains a finite number of elements. A set is infinite if it is not
finite.

� The set A us said to be a subset of a set B, denoted A � B , if and only if
every member ofA is also a member of B.

� If A is a set, the power set of A, denoted P (A), is the set of all subsets of
the setA. In other words,

P (A) = fBjB � Ag (4.20)

Note that both the set ; and the setA itself are members of P (A).

� IfA andB are sets, then the Cartesian product ofA andB, denotedA�B,
is the set of all ordered pairs ha; biwhere a 2A and b 2 B.

� IfA1; : : : ;An are sets, the Cartesian productB = A1� � � ��An is the set
of all n-tuples ha1; : : : ; ani inB such that ai 2 Ai for all i = 1; : : : ; n.

� If A and B are sets, then a function f from A to B, denoted f : A ! B,
is an assignment of a unique element of B to each element of A. We write
f(a) = b if b is the unique element of B assigned by the function f to the
element a ofA. A is called the domain of f whileB is called the codomain
of f .

� If A and B are sets, then a binary relation from A to B is a subset of
A � B. In other words, a binary relation from A to B is a set of ordered
pairs where the first element of each ordered pair is a member of A and the
second element is a member ofB. Likewise, an n-ary relation over the sets
A1; : : : ;An is a subset of the Cartesian productA1 � � � � �An
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� A relation on the setA is a relation fromA toA.

� If A and B are sets, the set of functions from A intoB, i.e. the set of func-
tions withA as domain andB as codomain, is denotedBA, and is formally
defined by

B
A
= ff jf :A! Bg (4.21)

4.3.3 Attributes and Domains

Let a be any object, say, an attribute and let A be a set containing all legal values
for a. Then, the set A is called the domain of a. We may also say that the set A
provides a state space for a.

As with programming languages, we wish to provide a set of standard domains
for primitive objects, such as integers, reals and so on. Most attribute domains will
be subsets of these. We will use black-board bold fonts to denote these standard
domains, and for the remainder of the article we define the following domains, and
their respective sub-domains:

� The set of Booleans B = ftrue; falseg. This is a fundamental set containing
two elements, true and false. In the literature, this set is often denoted 2,
which contain the elements 0, and 1. Hence, we may also refer to this set
as the binary set. However, B and 2 are equivalent, but we will use B in the
remainder of this article.

� The set of real numbers,R. A commonly used subset ofR is the unit interval
I= [0; 1]. The unit interval has its application in the fuzzyset-theory and
probability. Another common subset ofR is [�1; 1]which is used in spectral
analysis.

� The set of integers, Z. The set of natural numbers N, the set of positive
integersZ+ and so on, are subsets ofZ. Note that we treat the set of integers
as a subset of the set of reals, i.e. Z� R.

� The set of complex numbers, C . The set of complex numbers may not at first
sight look interesting, but in temporal analysis they play an important role in
relation to the study of periodicity and the related Fourier analysis.
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� The set of characters, V. Today, a plethora of character sets have been de-
fined such as the ASCII set. For the sake of being able to describe words
in most languages using Latin letters, we may choose to adhere to the
ISO8859-1, or the unicode character set. For other languages, we may have
the Cyrillic characters set, the Hebrew character set and so forth.

� The set of all strings,WV , which is the set of all sequences (or n-tuples) of
characters from V. W has no inherent order, but a lexicographical order can
be defined if a total order is defined overV.

� The set of all spatial elements, S. As we want to model the spatial part of
objects as an attribute of the object, we need to define this domain for these
kinds of attributes. This set need to be more closely specified depending on
the number of dimensions modelled, and the type of objects modelled.

� The set of all times, T, with the corresponding valid time domainTv, trans-
action time domainTt and bitemporal domainT2.

4.3.4 Functions over Time

In the literature temporal attributes of some domain A are often modelled as sub-
sets of the Cartesian productA�T. However, since we assume a linear model of
time, we can allow only one value of A for each value of T. It therefore makes
sense to express everything that varies over time, as functions over time.

A function f over time is a function from the time domainTinto some arbitrary
codomainA:

f : T! A: (4.22)

Because we assert that such functions return a value even for times when the at-
tribute is not defined, or does not exist, we introduce the symbol? (null) which is
used to indicate that an object did not exist at a particular time. Thus, any domain
A has a corresponding temporal domain

A
T
= ff jf : T! (A [ f?g)g (4.23)

which is the set of all functions withTas domain and (A[f?g) as codomain. For
convenience, we introduce the notationA? to denote that the null object has been
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added to the setA. In other words,

A? = A [ f?g (4.24)

To each function f(t) we assign a lifespanLS(f), which according to [CC87]
[JCE+94], can be any subset of T, representing the times at which the attribute is
defined. Formally, we define the lifespan of a function over time as a function from
a temporal domainAT into the power set P (T),

LS : A
T ! P (T); (4.25)

such that

LS(f) = ft 2 Tjf(t) 6= ?g: (4.26)

In some cases, we restrict a lifespan to be a connected subset of T, i.e. a time
interval. A time interval can be identified by an ordered pair ht1; t2i inT�T, where
t1 � t2. Since the distinction between lifespans and time intervals is important, we
will define the set I(T) to be the set of all time intervals, and P (T) to be the set of
all lifespans. Thus

I(T) = fXjX � TandX is connectedg (4.27)

From this definition it is clear that I(T)� P (T).
If the lifespan of a function contains only one instant, the duration is zero. The

semantics of this is significant, since it allows us to represent instantaneous facts
such as events (instantaneous changes) or snapshots (instantaneous states).

4.3.5 Temporal n-tuples and the Product of Temporal Domains

An object is usually described by a set of attributes, and can therefore be said to
be an n-tuple. If we assume that the attributes of a temporal object are given as
functions over time, then also the object itself can be given as a function over time.
Such a function is in this article referred to as a temporal n-tuple. Temporal ob-
jects may also contain time-invariant attributes which complicates matters a little.
However, initially we are going to assume that all attributes of an object is given as
functions over time, since time-invariant attributes can be represented as functions
that return the same value for all times.
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Let A1; : : : ;An be (non-temporal) sets. A temporal n-tuple over the product
A

T
1 � � � � �A

T
n is given by

F (t) = hf1(t); : : : ; fn(t)i (4.28)

However, we must distinguish between the lifespans of each entry in the tuple,
and the lifespan of the tuple itself, e.g. a 3-tuple at one time F (t1) = h?;?;?i
is semantically different from F (t2) = ? at another time. Hence the product
described here is not really a Cartesian product. However, we define the product of
temporal domains as the set of temporal n-tuples which are functions from Tinto
the Cartesian product (A1;? � � � � �An;?) plus ?. More specifically,

A
T
1 � � � � �A

T
n = fF jF : T! (A1;? � � � � �An;? [ f?g)g (4.29)

As already indicated above, it is often the case that an attribute of an object is
not defined for the entire lifespan of that object. In some cases, attributes may even
be maintained and updated for objects that do not logically exist, e.g. physicians
may keep records of babies even before they are born. This is quite problematic to
deal with. Hence, we assume that no entry in a temporal n-tuple can exist unless
the n-tuple itself exist. In other words, we assert that

LS(fi) � LS(F ) (4.30)

for all i = 1; : : : ; n.
Until this point, we have assumed that all entries in a temporal n-tuple are func-

tions over time. In practice, it would be more logical that time invariant attributes
(such as identifiers) were not represented as functions over time. Therefore, we
should be able to construct products of a mixture of temporal and non-temporal
domains.

If at least one of the entries in an n-tuple is a function over time, then also
the n-tuple itself is a function over time, since it has different values for different
times, e.g. consider the real functions f(t) = 2t and g(t) = t

2�3, and the constant
c = 5. Let the temporal n-tuple F (t) be given by

F (t) = hc; f(t); g(t)i; (4.31)

then the value of F (t) for t = 4 is given by

F (4) = h5; 8; 13i (4.32)
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4.3.6 Functions and Operators over Temporal Domains

Recall that a function f : A ! B is an assignment of a unique element of B to
each element of A. If A is a single set, the function is an unary function. If A
is the Cartesian product of two sets, the function is a binary function. Both unary
and binary functions are often expressed in terms of operators, such as �b or a+b,
but a strict functional notation is also possible such as neg(b) or sum(a; b). Hence,
we will stick to the term function in the remainder of this article, even if we are
speaking of operators.

Let 
 be the set of all functions over non-temporal domains and let ! be any
function in 
. The functions in 
 are characterized by their domain and codomain,
e.g. we may specify the following functions:

+ : (R�R)! R e.g. 3 + 4 = 7 (4.33)

>: (R�R)! B e.g. 4:5 > 6:7 = false (4.34)

StrLength :W ! N e.g. StrLength(“Norway”) = 6 (4.35)

To the set 
, there is a corresponding set 
T , and for every function ! in 


there is a corresponding temporal function! T in 
T , usually with the same symbol
as !, such that if

! : A! B; (4.36)

then,

!T :A
T ! B

T
: (4.37)

This means that if we can add two integers and get another integer, we can also
add two temporal integers (i.e. integers that are expressed as functions over time)
and get another temporal integer, e.g.

fa(t) + fb(t) = fc(t): (4.38)

Hence, if !(a; b) = c then !T (fa; fb) = fc means that for every t such that a =

fa(t), with a 6= ?, and b = fb(t), with b 6= ?, there exist a c = fc(t) with
!(a; b) = c. Usually, if for any t, fa(t) = ? or fb(t) = ?, then also fc(t) = ?.
This ensures that fc(t) is only defined for those values of t where both fa(t) and
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fb(t) are defined. However, this may not apply to all functions, e.g. the function
that takes two sets and returns their union, may return a non-null result if one of
sets are null.

Now, what happens if we add a non-temporal integer to a temporal integer, say
a+ fb. It is obvious that the result is another temporal integer f c, e.g. if a = 2 and
fb = 3t+4, we get fc = 3t+6. This problem corresponds to the problem described
in Section 4.3.5. This way, if one of the arguments of a function is a function over
time, the result is also a function over time. In other words, if f : A � B ! C

then,

f : A
T �B! C

T (4.39)

f : A�BT ! C
T (4.40)

f : A
T �BT ! C

T
: (4.41)

In addition, there are, of course, many other functions which take functions
over time as argument, and/or return a function over time as a result that are not
members of 
T (since they have no corresponding function in 
). However, such
functions can be freely defined in any algebra associated with the temporal set-
theory.

4.3.7 Temporal Sets

A set may contain a number of members. Over time, a set may receive new mem-
bers while existing members may secede their membership. The members of a
temporal set can be a non-temporal object, a function over time, or another set or
temporal set. A temporal set is a structure that keeps track of which elements were
members of the set at which times.

There are many ways of expressing temporal sets using classic set theory:

� As a relation: Given any domainA and the time domainT, the temporal set
�R is a subset of A � T. Then, for all ordered pairs ha; ti in �R where a is
an element of A and t is an element of T, a is said to be a member of �R at
time t.

� As a function into B T : Let A be any domain. Then, a temporal set �� is a
function �� : A ! BT that for every element a of A returns the temporal
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characteristic function for a. Let � = ��(a) then �(t) = true if a is a
member of �� at time t, and �(t) = false otherwise.

However, since we have chosen to express temporal attributes as functions over
time, we also choose to define a temporal set as a function over time: given any
domainA and the time domainT, a temporal set �F over A can be described as a
function from Tinto the power set P (A)

�F : T! P (A) (4.42)

that for every time t in T returns a subset of A containing the elements that are
members of �F at that time. Since the expression �(t) denotes a normal non-
temporal set (we omit the subscripts from now on) we use the notation

a 2 �(t) (4.43)

to indicate that the element a is a member of the temporal set � at a time t. Equiv-
alently, we use the expression

a =2 �(t) (4.44)

to express that a is not a member of � at time t.
The membership lifespan of an element a with respect to a temporal set � ,

denoted LS(a 2 �), is the set of times at which a is a member of � . In other
words,

LS(a 2 �) = ft 2 Tja2 �(t)g (4.45)

Following this definition, it is clear that the assertion

LS(a 2 �) � LS(�) (4.46)

must hold. Another assertion that may be introduced is that a set cannot contain
dead members, in other words

LS(a 2 �) � LS(a): (4.47)

However, this axiom should only be optional as it is possible that some types of
sets may contain dead members, e.g. some members of, say, the GIS hall of fame,
may no longer be alive.
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To clarify the notion of a temporal set, an example can be enlightening. Let
EU be the set of all members in the European Union (formerly EEC ). Then the
set EU(1958) = fGermany; France; Italy;Belgium;Netherlands;Luxembourgg
while the set EU(1999) contains all the countries that are members of the Eu-
ropean Union in 1999.

4.3.8 Common Operations on Temporal Sets

Equality and the Equality Function

Two temporal sets �1 and �2 are equal if they have the same lifespan, i.e. if
LS(�1) = LS(�2), and if they for all times in this lifespan, contain the same
elements.

However, this construct is rather restrictive, and in many cases we want to
express that two sets are equal at some times while not equal at some other times.
For this purpose we define the equality function, denoted = T , as a function in B T .
Let �1 and �2 be temporal sets, the equality function for temporal sets is defined
such that for all t inT:

(�1 =T �2)(t) =

8<
:
? if �1(t) = ? or �2(t) = ?
true if �1(t) = �2(t)

false otherwise
(4.48)

This definition clearly indicates that the result of ? = T ? is undefined. It is
natural that many would question this, but an example should help. Let f(t) and
g(t) denote the salary of two persons living in the 20th century. Then it is obvious
that the result of f(t) =T g(t) must be undefined for t = 1600, because it does not
make sense to compare the salaries of persons that are not alive.

In other situations, we may only be interested in the times at which two tempo-
ral sets are equal. Since the statement �1 = �2 is a proposition, then we can obtain
the lifespan of this proposition,LS(� 1 = �2), by the formulae

LS(�1 = �2) = ft 2 Tj�1(t) = �2(t)g: (4.49)

Note that LS(�1 = �2) is not the same as LS(�1 =T �2)
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Empty Temporal Sets

A temporal set is always empty if it never contained any elements during its lifes-
pan.

We may also define the temporal empty set, denoted ;T , as the set whose lifes-
pan is Tand which is empty at all times. Then we use this set together with the
equality function to check at which times a temporal set is empty or not.

The Temporal Characteristic Function

Given any domainA and the time domainT, the temporal characteristic function
�� of an element a ofA with respect to a temporal set � , is a function

�� :A! BT (4.50)

that returns a binary function over time. This function is true for all times when
a is a member of � , and false for all times when a is not a member of � . A nice
property with (4.50) is that it can easily be extended to a temporal fuzzy set by
replacing B T with IT.

Temporal Subsets

If �1 and �2 are temporal sets with respect to some domainA, then �1 is a temporal
subset of �2 if LS(�1) � LS(�2) and for all t in LS(�1),

�1(t) � �2(t) (4.51)

To indicate the times at which �1 is a subset of �2 we can use the expression
LS(�1 � �2).

The subset relation expressed as a function over time determine the truth values
for which times a subset relation between two sets holds. Thus, the subset relation
as a function over time, denoted �T , can be defined as

�T : �1 � �2 ! B T (4.52)

where,

(�1 �T �2)(t) =

8<
:
? if �1(t) = ? or �2(t) = ?
true if �1(t) � �2(t)

false otherwise
(4.53)
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The definition above naturally raises a couple of questions. The questions are,
assuming that A is a non-null set, whether ? � A and whether ? � ?. Let us
assume the example of the EU and EMU (the European Monetary Union). Then
the first question would correspond to whether the EMU countries are a subset of
the EU countries in 1986? Since the EMU did not yet exist in 1986, it does not
make sense to ask the question, hence ? � A is undefined. For the same reason,
it is obvious that also ? � ? is undefined.

Union, Intersection, Difference and Complement

By representing temporal sets as functions over time, most of the common set
operations for non-temporal sets can easily be extended to temporal sets. Let � 1
and �2 be temporal sets with respect to some domain A, the operations union,
intersection, difference and complement can respectively be defined as functions
over time, such that for all t inT:

(�1 [ �2)(t) =

8>><
>>:

�1(t)[ �2(t) if �1(t) 6= ? and �2(t) 6= ?

�1(t) if �2(t) = ? and �1(t) 6= ?
�2(t) if �1(t) = ? and �2(t) 6= ?
? otherwise

(4.54)

(�1 \ �2)(t) =

�
�1(t) \ �2(t) if �1(t) 6= ? and �2(t) 6= ?
? otherwise

(4.55)

(�1 n �2)(t) =

�
�1(t) n �2(t) if �1(t) 6= ?
? otherwise

(4.56)

�1(t) =

�
A n �1(t) if �1(t) 6= ? and �2(t) 6= ?
? otherwise

(4.57)

These definitions may seem quite intuitive, but they are not, e.g. does it make
sense to take the union of all NATO countries and all EEC countries in 1954?
According to our definition, it does since this set contains the countries that are
either a member of NATO or of EEC. In 1954 this set will only contain the NATO
members, since EEC did not form until 1958.

A similar question arises for intersection: does it makes sense to take the in-
tersection of all NATO and EEC countries in 1954? According to our definition, it
does not which means that the intersection is undefined, but it might also be a ques-
tion whether the intersection for 1954 should be defined, but empty. And for set
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difference, does it makes sense to compute difference between the NATO countries
and the EEC countries (i.e. the set of the NATO countries who are not members of
the EEC) in 1954? According to our definition, it does not since we assume that
�1 n �2 = �1 \ �2. However, if the definition of intersection is changed, so must the
definition of set difference be changed accordingly

The Cardinality Function

The cardinality of a temporal set is also a function over time. Let � be a temporal
set, then the cardinality j� j is a function in NT such that for all t inT, the following
holds:

j� j(t) =

�
j�(t)j if �(t) 6= ?

? otherwise
(4.58)

The Support of a Temporal Set

The support of a temporal set � denoted supp(�) is a set that contains all elements
who for at least one t inTis a member of � . In other words, for all t inT,

supp(�) =
[
t2T

�(t) (4.59)

4.3.9 The Temporal Cartesian Product and Relations on Temporal Sets

A relation between two (non-temporal) sets A and B is a subset of the Cartesian
product A � B. Similarly, we want to define a temporal relation between two
temporal sets as a subset of the product �1� �2. Since a pair in a temporal relation
can be related to each other forever (even if each entry has a finite membership
lifespans in its respective set), the lifespan of a product between two temporal sets
has to be T. Moreover, we can also have a temporal relation between two non-
temporal sets.

Let �1 and �2 be temporal sets. The temporal Cartesian product of � 1 and �2
denoted �1 � �2, is a temporal set that contains all ordered pairs ha1; a2i where
a1 2 supp(�1) and a2 2 supp(�2), and such that the membership lifespan of each
pair in �1 � �2 equalsT. In other words:

(a1 2 supp(�1))^ (a2 2 supp(�2)) () ha1; a2i 2 (�1 � �2) (4.60)
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And for each pair ha1; a2i we have

LS(ha1; a2i 2 (�1 � �2)) = T: (4.61)

This, again, requires according to (4.46) that

LS(�1� �2) = T (4.62)

Hence, if a temporal set �1 is considered to be a subset of supp(�1) � T, and
in the same way, �2 is a subset of supp(�2) � T, then �1 � �2 correspond to the
Cartesian product supp(�1)� supp(�2)�T.

As indicated above, we also define a product as a temporal set from non-
temporal sets. If �1 contains elements from the set A1 and �2 contains elements
from the setA2, then we introduce the temporalized Cartesian product of two non-
temporal sets, denoted A1 �T A2, such that the result is a temporal set. In other
words, the temporalized Cartesian product of two sets A1 and A2 correspond to
the Cartesian product A1 � A2 � T. In this case, note that if supp(�1) � A1 or
supp(�2) � A2, then also �1 � �2 � A1 �T A2.

Now, that we have established the the concept of the temporal Cartesian prod-
uct, we can move on to define temporal relations. A temporal relation can be used
to express that two objects in different sets (non-temporal or temporal sets) are re-
lated to each other only at some subset of T. Let �1 and �2 be temporal sets with
members from A1 and A2 respectively. A binary temporal relation from � 1 to �2
is a subset of �1��2 (or, if you like,A1�T A2). In other words, a binary temporal
relation from �1 to �2 (or from A1 to A2) is a temporal set RT of ordered pairs
where the first element of each ordered pair comes from supp(�1) and the second
element comes from supp(�2). We may use the notation (a1 RT a2)(t) to denote
that ha1; a2i 2 RT (t), and (a1 6RT a2)(t) to denote that ha1; a2i =2 RT (t).

Based on these definitions, we can identify at least five properties of temporal
relations between two temporal sets. Let RT be a temporal binary relation between
the two temporal sets �1 and �2:

� A temporal relation is called a strict temporal relation if the following holds
for all times:

LS(a1RTa2) � LS(a1 2 �1) \ LS(a2 2 �2) (4.63)
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� A temporal relation is called a loose temporal relation if it is not strict and
the following condition holds for all times:

LS(a1RTa2) � LS(a1 2 �1) [ LS(a2 2 �2) (4.64)

� A temporal relation that is not a strict temporal relation nor a loose temporal
relation is called a free temporal relation.

� A strict temporal relation is called an exactly strict temporal relation or co-
existence relation if the following holds for all times:

LS(a1RTa2) = LS(a1 2 �1) \ LS(a2 2 �2) (4.65)

� A loose temporal relation is called an exactly loose temporal relation or con-
ditional temporal relation if the following condition holds for all times:

LS(a1RTa2) = LS(a1 2 �1) [ LS(a2 2 �2) (4.66)

To clarify the semantics of these types of relations we give three examples: Let
�P be the temporal set of all (living) persons, and let �C be the temporal set of
all (existing) companies. Then an employment relation from �P to �C is a strict
temporal relation since no person can be employed at a company unless both exist
at the same time. A person in �P may be inducted to the GIS hall of fame. This
relationship is a loose temporal relation since a person may only be in a hall of fame
if the hall of fame exist, although the person may still be in the hall of fame after
his death. A grandparent relation from �P to �P is a free relation since a grandchild
is related to its grandparent even if the grandparent died before the grandchild was
born. The grandparent relation will start to exist from the moment the grandchild
was born and will continue to exist forever, even if both grandchild and grandparent
are dead ([MSW92]).

Furthermore, as we can identify binary relations on a set A to be reflexive,
symmetric, and transitive, we may categorize their temporal counterparts in the
same way. So, if we let x stand for reflexive, symmetric, transitive etc., we may say
that a binary temporal relation RT on a temporal set � is x if for all t in LS(RT),
RT (t) is x.
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4.4 Extending to the Bitemporal Domain

So far, we have assumed that time is one-dimensional. In this section, we extend the
concept to two-dimensional time. In principle, this can be achieved by replacing
occurrences of the time parameter with a pair of time parameters. In this section,
we give a brief overview of the extensions into the bitemporal set theory and the
associated models.

4.4.1 The Bitemporal Set Theory

In the temporal set theory, we expressed attributes and sets as functions over one
time dimension, preferably the valid time dimension. Extensions into the bitempo-
ral realm is quite easy since we can replace all functions over one time dimension
with functions over two time dimensions. Let Tv and Tt be the valid time and the
transaction time dimension respectively, a bitemporal attribute f of some domain
A is then defined as a function

f : Tt�Tv ! A?: (4.67)

Then, a = f(tt; tv) is the function that for all pairs of transaction time t t and valid
time tv returns a unique element a inA [ f?g. Thus, any attribute domainA has
a corresponding bitemporal domain:

A
2T

= ff jf : Tt�Tv ! A?g (4.68)

More specifically, we define the valid time dimension to be the set of all times
stretching from the beginning of time till the end of time (or infinity). The trans-
action time domain is more restrictive, since it spans from the the creation of the
database and till the present time, usually denoted with the symbol now. As already
indicated, we use the symbolT2

= Tt�Tv to denote the bitemporal domain.
To each function f from some temporal domain A2T we assign a bitemporal

lifespan LS2(a2T ), which can be any subset of T2. Although [JCE+94] only pro-
vide a definition for bitemporal intervals, we use the same distinction as for the
mono-temporal domain to distinguish between bitemporal intervals and lifespans.
Thus, a bitemporal interval is a connected subset of T2 with sides parallel to the
time axis, whereas a bitemporal lifespan is any subset of T2. Both bitemporal
intervals and lifespans can be finite or infinite sets of bitemporal instants.
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The bitemporal duration of a bitemporal lifespan, denoted jLS 2(a2T )j, is the
total area covered by the lifespan. However, many bitemporal lifespans are infinite,
and the area of a bitemporal lifespan is maybe not of great importance. On the other
hand, in many cases we are interested in the valid time projection of a bitemporal
lifespan at some transaction time. We therefore define the function LSv : (A

2T �

Tt) ! P (Tv) which for every transaction time in Tt returns a lifespan in valid
time P (Tv) of some function in A2T . Subsequently, jLSv(f; tt)j is the function
that returns the duration of the valid time lifespan of f at some transaction time t t.
A similar function LSt(f; tv) can be identified for transaction time lifespans.

This leads us to the concept of valid and transaction timeslices. Given any
set of functionsA2T , the following two functions, called timeslice projectors, are
defined:

�v : A
2T �Tt! A

Tv (4.69)

�t : A
2T �Tv ! A

Tt (4.70)

These two functions return respectively a valid timeslice and a transaction timeslice
of a bitemporal attribute respectively. In other words, given a fixed transaction time
t
0

t or a fixed valid time t0v, we have

�v(f; t
0

t) = f(t
0

t; tv) (4.71)

�t(f; t
0

v) = f(tt; t
0

v) (4.72)

4.4.2 Functions over bitemporal attributes

For every function ! in 
 there is a corresponding function ! 2T in 

2T , usually

with the same symbol, where 

2T is the set of all functions over bitemporal do-

mains. So if,

! : A! B; (4.73)

then also

!
2T

:A
2T ! B

2T
: (4.74)

As we did in Section 4.3.6, we can identify the following rules to construct
products of a mixture of bitemporal an non-temporal domains. So, if f :A�B!
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C, then

f : A
2T �B! C

2T (4.75)

f : A�B2T ! C
2T (4.76)

f : A
2T �B2T ! C

2T (4.77)

Then, what aboutA2T�BT orAT�B2T ? There are two solutions to this problem:

1. The bitemporal domain is projected onto a mono-temporal domain by mak-
ing a timeslice with tv (or tt) set to now. Thus, the result of the function is a
mono-temporal attribute. In other words,

f : A
T �B2T ! C

T (4.78)

f : A
2T �BT ! C

T
; (4.79)

whereCT can be either refer to the valid time or the transaction time dimen-
sion, depending on the application.

2. The mono-temporal domain may be expanded into a bitemporal domain by
setting tt = tv for all times in the mono-temporal domain.

f : A
T �B2T ! C

2T (4.80)

f : A
2T �BT ! C

2T (4.81)

However, the second alternative is not unproblematic if we try to duplicate
a gradually changing attribute from valid time into transaction time. Notoriously,
transactions are not gradual changes, and the transaction time domain should there-
fore be implemented with such a constraint. In addition, expanding temporal data
into bitemporal data necessarily means that we add information which is not based
on reality. It is therefore only the first alternative that provides a consistent solution
to the problem.

4.4.3 Bitemporal Sets

As with temporal sets, there are at least three ways to express a bitemporal set using
classic set theory. But formally, we define a bitemporal set as a function over T2:
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given an arbitrary domain A and the time domains Tt and Tv, a bitemporal set �
can be described as a function from T2, into the power set P (A):

� : T2! P (A) (4.82)

that for every pair of times inT2 returns a subset ofA containing the elements that
are members of � at time htt; tvi.

In general, the operators defined over temporal sets may be extended to bitem-
poral sets, with the difference that all occurrences of the time is replaced with a
pair of times.

4.5 Tropology

A mature time-based temporal data model must take all aspects of time into con-
sideration. This also includes aspects of actions, processes and changes that occur
in the modelled world. Since these are important matters, there has recently been
an increasing interest on the change aspect of the real world. Another aspect of the
temporal set theory, as presented so far, is that it is not equipped with a machinery
to update the structure as time passes. Therefore, we need some kind of evolution
language to describe changes in a temporal data set.

Because there is a need to study and understand the evolutionary aspects of
the real world, we introduce the term tropology to denote this area of study. The
word ‘tropology’ stems from the Greek word ‘tropos’ which means ‘to change’ or
‘to turn’. The tropology introduced in this section aims to fill the need to describe
qualitative and quantitative aspects of changes, and to enable means for updating a
temporal data set. In some ways, we view tropology to be akin to topology, but on
the other hand, there is a subtle difference between them.

4.5.1 Defining Tropology

To give tropology a formal definition rooted in mathematics has been the most
difficult task of the work presented in this article. One tempting way to define
tropology is by defining some kind of vector space. In the Euclidean plane, a
vector is the directed distance from one point to another. Similarly, we could define
change as a vector from one state to another.
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Formally, a vector space is a spaceV which is equipped with the two functions
sum and scalar product:

v1 + v2 : V�V! V (4.83)

c � v : R�V! V (4.84)

such that a number of properties, such as associative and distributive properties,
are satisfied. However, we get problems with such a definition of tropology since
not all changes are ‘scalable’, and it might also be that two changes may not give
the same result if they were applied in a different order.

Instead, we think that tropology should be defined in a similar way as topology
is defined. Given any set A the tropology must be defined for the space spanned
by the Cartesian productA�T.

Since we did not have the time to review the preciseness and conciseness of
the definition, it should only be considered to be a preliminary definition: Let A
be a set containing versions of a group of objects. To this set, there is a function
LS : A! I(T), that to every object a inA assigns a time interval which denotes
the time during which a is current. The tropology on A is then defined as the
relationR onA such that:

1. for every pair ha; bi inR, the following condition holds

LS(a) � LS(b) (4.85)

2. for every two pairs ha; bi and hb; ci inR, then ha; ci is not in R.

It is thereby clear that the tropology R is irreflexive, asymmetric and non-
transitive, and can therefore be represented as a Hasse-diagram.

In general, each pair ha; bi represent a passage from one state to another state
indicated by the objects versions a and b, respectively. This passage is generally
referred to as a change. Each change have a lifespan which denotes the time during
which the change occurred, and is defined by

LS(ha; bi) = [LS(a); LS(b)]: (4.86)

This definition of tropology conforms to a great extent with Frank’s discussion
of qualitative reasoning with partially ordered time models [Fra94]. It is a ques-
tion, of course, whether the tropology should be defined to conform with Frank’s
discussion of the semi-ordered time model, but a semi-ordered tropology is not
discussed in this article.
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4.5.2 Related Work

Researchers have studied changes in temporal data sets for some time, but the
term ‘tropology’ has never been used. Some of the most interesting sources that
can be related to tropology are found in the literature of linguistics and artificial
intelligence. McCarthy’s situation calculus is one attractive model [MH69]. In this
theory, a situation represents a complete state of the universe at an instant of time,
and the set S is defined to contain all situations, including imaginary situations.
Then all actions or changes are modelled as fluents which are functions from S

into S, or into the binary set B . We have also seen some extension to this calculus
that handles continuous change (e.g. [Sha90]).

One such extension is Allen’s general theory of action of time [All84], which
is partly based on [Mou78]. His theory describes the world by a set of temporally
qualified assertions describing knowledge about past, present and future time. The
static aspects of the world are captured by properties whereas the dynamic aspects
of the world are captured by occurrences. Occurrences can again, according to
[Mou78], be divided into events which focus on performances and achievements,
and processes which focus on continuous processes. An event is an accomplish-
ment that occurs over some time interval. If an event occurred over a time interval
X, it could not occur during any subinterval ofX because the accomplishment was
not fulfilled over that time interval. A process, on the other hand, does not focus
on the accomplishment. A process that is occurring during a time interval X is
also defined to occur during any subinterval of X. Allen’s theory is supported by
the tense operators described in Section 4.3.1 along with the set of relationships
between time intervals [All83] already introduced in Figure 4.1 (Section 4.2.2).

What distinguishes the research described above from what we have seen par-
ticularly in the field of temporal databases, is the focus on the underlying processes
and the actions that cause changes in the real world. It has already been recog-
nized that temporal databases can be constructed by only representing changes or
events. Such data models have therefore been named event-oriented data mod-
els. However, we assume a model where both the changes and states are explicitly
represented and described, and that known relationships between them are given.

Interestingly, in recent research of temporal GIS we have seen an increasing
interest in these matters. Yuan [Yua98] states that such an approach is necessary to
enable temporal GIS to efficiently handle queries about static and dynamic aspects
of the universe of discourse (UoD). One of the earlier models for spatiotemporal
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models is the Triad model where spatiotemporal information is viewed from where
(spatial), when (time), and what (thematic) perspectives [Peu94]. A fourth corner
can be added to represent the objects which are characterized by all those three per-
spectives and then [CM98] adds the fifth corner, processes, which can be related to
all the four other corners. If we are to represent changes explicitly in the database,
we need a taxonomy of changes or processes. In general, we would like to have an
explicit representation of all actions and processes of interest to our UoD. Not all
of these result in changes to the UoD, but it is on such changes where the focus is
in the current section.

In recent literature, several taxonomies of changes have been presented. Clara-
munt and Thériault [CT95] distinguishes between three types of changes or pro-
cesses: The first type of changes includes those that concern the evolution of a
single entity. These include basic changes as appearance, disappearance and trans-
formations. The second type of changes includes those that involve functional
relationships between several entities. These include replacement processes such
as succession and permutation, and diffusion processes such as production, repro-
duction and transmission. The third type of changes includes those that are the
evolution of spatial structures involving several entities. These include restructur-
ing processes such as split, merge and reallocation; for example of polygons in a
polygon mesh.

In [Ren96], a conceptual modelling language where states and transitions bet-
ween states are linked together in a directed acyclic graph is proposed. In this
language the duration of both states and transitions has also been taken into con-
sideration. This way, seven basic types of transitions between objects have been
identified. These are birth, death, alteration, reincarnation, split, merge and reallo-
cation. A more comprehensive modelling formalism has been presented in [HE97],
and the set of different change types has been further refined (although the changes
are not considered as explicit entities). A similar taxonomy has been presented for
Voronoi diagrams [MAGM98]. The interesting aspect of the research above is that
it defines changes in a similar way to McCarthy and Hayes [MH69], as functions
from one set of states into another. Each change takes a set of objects as input, and
give another set of objects as output.

Changes in topological relationships among objects are also of interest to
tropology. Egenhofer and Al-Taha [EA92] used the 9-intersection method to study
changes in topological relationships between gradually changing regions. The
eight different topological relationships between pairs of regions are set up in a
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closest-topological-relationship-graph and the different paths in this graph have
been identified for different types of changes between the two regions. This theory
has also been extend to include interrelationships among points, lines and regions
[VR96].

Another aspect of tropology is the study of quantitative aspects of changes.
For continuous real functions over time, it is easy to obtain and exploit first and
second derivates as well as integrals of such functions. It should also be possible
to make representations of the derivate of a gradually changing region. However,
such changes can be quite difficult to quantify. This problem have been studied
in [Gal97] and three proposed metrics to measure the separation (or difference)
between two regions, boundary separation, size separation and interior separation
were studied. However, none of these proposals satisfy the conditions of a metric,
and some of them will even fail to give a sensible result in certain situations, e.g.
the boundary separation will not be able to measure the separation between the
northern and southern hemisphere of the globe.

Another problem is the combination of continuous changes with instantaneous
changes, e.g. if a peninsula is gradually eroded by the sea, it may eventually be-
come an island. Although the erosion is a continuous process in every respect,
the topological change that occurred when the sea broke through, is certainly a
discontinuous one.

4.5.3 Valid Time Tropology

In order to describe changes we need some kind of change description language.
Such a language can be used to describe previous changes in a data set as well as
to update a data set as time evolves. According to [RS93b], we introduce three
types of change operators or tropological operators: Let a and b be two objects
with respect to some universe of discourse.

� The constructor of an object a is an unary operation that creates a new object,
and is denoted .̀ The expression `a is read ‘the creation of a’.

� The modifier from one object a to an object b is a binary operator that estab-
lish a predecessor-successor relationship between two groups of objects, and
is denoted 7! . The expression a 7! b is read ‘a becomes b’.
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� The destructor of an object a is an unary operator that destroys the object a,
and is denoted a. The expression aa is read ‘the destruction of a’.

Additionally, for each object we may assign a value. We use the notation a:x
to indicate that a has the value x. In other words, if a is a function over time and
has the value x at time t, then a(t) = x. However, we write a:x because it is not so
important at exactly which time a has the value x.

Related to these tropological operators and the lifespans of these which are
temporal intervals, a certain number of assertions must hold. In order to express
these axioms, we need the meets relation, indicated by the symbol ‘m’, between
two temporal intervals described in Section 4.2.2 ([All83]). It is now clear that,
according to [All84], the following four assertions must hold for the operators
given above.

LS(a) m LS(a 7! b) (4.87)

LS(a 7! b) m LS(b) (4.88)

LS(`a) m LS(a) (4.89)

LS(a) m LS(aa) (4.90)

We can now use these operators to express different types of changes. In
[HE97], a set of 20 different change types were identified, but it is obvious that
more exist. Related to simple functions over time, we can identify at least six
different types of changes:

� Create — An object has been created and assigned the value x.

`a:x (4.91)

� Alter — An object has changed from value x to value y.

a:x 7! a:y or a:(x 7! y): (4.92)

� Destroy — An object has been destroyed.

aa or a:(x 7! ?): (4.93)



98 CHAPTER 4. THE TEMPORAL SET-THEORY

� Reincarnation — An object that has been destroyed earlier, is recreated.

a:(? 7! x) (4.94)

� Metamorphose — An object changes type and appears with new identity and
(possibly) a new value.

aa:x 7! `b:y (4.95)

� Duplicate — An object has been duplicated.

a:x 7! `b:x+ a:x (4.96)

Related to sets, we may have a lot of different change types, many types involve
more than one set, e.g. the annex operation would dissolve one set and include the
members into another set. Some of the most typical types of changes amongst sets
are listed below:

� Aggregate — An arbitrary number of objects are gathered together to form a
new set, e.g. Belgium, Netherlands and Luxembourg form Benelux.

a+ b+ c 7! `A:fa; b; cg (4.97)

� Dissolve — A set is destroyed, but the members are not, e.g. the prime min-
ister dissolves the parliament.

aA:fa; b; cg 7! a+ b+ c (4.98)

� Include — A new member is included into the set, e.g. Sweden is taken up
as a new member of the European Union (EU).

a+A:fb; cg 7! A:fa; b; cg (4.99)

� Secede — A member secedes from the set, e.g. a politician secedes from a
political party.

A:fa; b; cg 7! A:fa; bg+ c (4.100)
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� Empty — All the members in a set are seceded from the set. The set itself is
not destroyed, e.g. a bottle of water is poured out.

A:(fa; b; cg 7! ;) (4.101)

� Split — A set is destroyed, and the members of the old set form one or more
new sets, e.g. Czechoslovakia splits to form Czech Republic and Slovakia.

aA:fa; b; c; dg 7! `B:fa; bg+ `C:fc; dg (4.102)

� Merge — Two or more sets are destroyed, and the members of the old sets
form a new set, e.g. East and West Germany merge to form Germany.

aA:fa; bg+ aB:fc; dg 7! `C:fa; b; c; dg (4.103)

� Deduct — A subset of a set, secedes from one set and form a new set, e.g.
the Baltic Countries are deducted from the Soviet Union.

A:fa; b; c; dg 7! A:fa; bg+ `B:fc; dg (4.104)

� Annex — A set is destroyed, and the members are included into another set,
e.g. Iraq annexes Kuwait.

A:fa; bg+ aB:fc; dg 7! A:fa; b; c; dg (4.105)

� Move: A:fa; b; cg+B:fd; eg 7! A:fa; bg+B:fc; d; eg— Some members
of one set, secede from this set and become members of another set, e.g.
Israel takes the western bank from Jordan.

� Copy out — Some members of one set, form a new set, but do not secede
their membership from the old set, e.g. some members of the EU form the
European Monetary Union (EMU).

A:fa; b; cg 7! `B:fa; bg+A:fa; b; cg (4.106)

� Copy over: — Some members of one sets also become members of another
set, e.g. some members of the EU joins the EMU at a later time.

A:fa; b; cg+B:fd; eg 7! A:fa; b; cg+B:fb; c; d; eg (4.107)
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As can be seen above, many of these changes involve multiple creations and
destructions of sets (or even members). It is important to notice that all the op-
erations of one individual change have the same lifespan as the total change, e.g.
given an annex operationA+ aB 7! A we must assert that

LS(aB) = LS(A+ aB 7! A) (4.108)

4.5.4 Causal Relationships

In many cases, we are interested in preserving causal relationships in a temporal
dataset, provided that these are known. We therefore introduce the causal operator
; as a new tropological operator. In fact, the causal operator takes, according to
[All84], two forms:

� Agent causality, denoted
a
;, means that some change was caused by some

object or agent (using AI terminology), e.g. if the object a makes a modifi-
cation to object b such that b, having the value x gets the new value of y, we
may write

a
a
; b:(x 7! y): (4.109)

� event cause, denoted
e
;, means that one change was caused by some other

change or event, e.g. if the modification of an object a from value x to value
y caused object b to change from value v to value w, we may write

a:(x 7! y)
e
; b:(v 7! w): (4.110)

According to [All84], it is clear that a certain set of assertions must hold for
these operators. For agent causality, if a

a
; C, then

LS(C) 2 LS(a); (4.111)

which means that if the object a caused some change, the change must start during
the lifespan of a. Note that, according to this axiom, the change may continue to
occur even after the death of a. With event-causality on the other hand, we must
require that the change cannot cause another change prior to its occurrence [All84]:

LS(C1) � LS(C2) (4.112)
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Figure 4.2: The extended history graph notation

A question is whether the change C2 may have to begin before the change C1

ended, but according to Allen [All84], it may not be so. In other words, we may
allow a potential change to be ‘latent’ in the system before it actually occurs, e.g.
the building of a new road may cause a new petrol station to pop up some time
after the construction of the road finished.

Such latent changes cannot be caused by agents. Instead, this should be mod-
elled as a caused some change C1 during its lifespan, which again caused another
change C2 to occur some time after C1.

4.5.5 Conceptual Modelling of Tropology

In literature, a few conceptual models have been suggested to describe tropology,
such as [Ren96] and [HE97] and also to some extent [CT95]. Whereas [HE97] and
[CT95] focus on qualitative aspects of temporal relationships between objects or
versions of objects, [Ren96] is also concerned about some durational aspects, and
also models the change as a separate type of object. In the following, we suggest
a new modelling language called the extended history graph model (EHG) which
combines the notations of [HE97] and [Ren96].

Given a function over time, we can identify at least three types of ‘states’ of
that function which may hold over intervals of time. If f is a function over time, f
is dead over the intervalX if f(t) = ? for all t inX, it is static over the intervalX
if f(t) has the same value for all t inX and jXj > 0, and it is changing otherwise.
A function is alive if it is not dead (i.e. either changing or static). Subsequently,
it is possible to implement a function over time by a sequence of alternating static
and dynamic segments, in addition to null-segments that identifies time intervals
during which the function is undefined.

In the EHG-model, which is illustrated in Figure 4.2, static segments are dis-
played as rectangular boxes, while dynamic segments are displayed as circles or
round-ended boxes. A null segment (previously introduced as ?) is displayed as a
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Figure 4.3: A sample Extended History Graph

rectangular box with a dashed outline. Letters are applied to the boxes to denote
identity, and primes (or subscripts) are used to denote different versions within the
same identity. The boxes are stretched along the horizontal time dimension in order
to mimic the lifespan of the segments.

In some cases we may need to give an intermediate state of a continuously
changing object. This can be done by a static segment whose lifespan has no du-
ration, and is indicated by a very narrow rectangle. Instantaneous changes on the
other hand, are modelled as dynamic segments whose lifespan has no duration.
These types of changes are indicated by circles. In addition, arrows provide con-
nections between dynamic and static segments. A solid arrow is used to denote
persistence of identity, while a dashed arrow is used to denote the creation of a new
identity. A wavy arrow is used to indicate causal relationships. A wavy arrow from
a dynamic segment to another dynamic segment indicates event causality, whereas
a causal relationship from a static segment to a dynamic segment indicates agent
causality.

Figure 4.3 shows an sample EHG of a story where a set of spatial regions has
been split and merged. The example shows a regionA that deducts a subset of itself
to form a new object B. The remainder of A is denoted A0. In the next change, A0

deducts another part to the new object C and becomes A 00. In the last change, B
annexes A to become B0 whereby A ends its life.
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4.5.6 Bitemporal Tropology

The valid time tropology and transaction time tropology are in principle of a similar
nature. The main difference is that an attribute can only change gradually over
valid time, while transactions are regarded as instantaneous changes. Although,
transactions may have duration and certain transactions may even last over quite
some time, we adopt the view that any transaction can be associated with one single
instant: the commit-time.

However, the bitemporal tropology is much more complex to deal with. If we
assume an attribute as a function over bitemporal space as illustrated in Figure 4.4,
we can identify at least three types of segments (in addition to the null-segment) of
such a function. These are as follows:

� static segments — represent the values or states of a bitemporal attribute.

� dynamic segments — represent the valid time transitions from one value or
state to another value or state of the attribute.

� transaction elements — represent the transactions associated with an at-
tribute.

A static segment of some domainA is an element of the setA�P (T2
), while

dynamic segments and transaction segments are elements of the setA2 � P (T2).
The bitemporal lifespan of a segment e is denoted LS2(e), and is restricted

to be a bitemporal interval. The bitemporal duration of the segment is denoted
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Figure 4.5: Transaction types

jLS2(e)j and represents the total area of the segment in the T2 space. For all
segments we have jLS2(e)j � 0, which allows us define segments that have no
duration, e.g. transaction segments always have zero duration since they have no
duration over transaction time.

4.5.7 Transaction Types

By studying various permutations of parameters needed in an update, a set of dif-
ferent transaction types can been identified. Generally we may have updates, cor-
rections and validations. Corrections may apply to all these three types of trans-
actions, that is correction of updates, correction of corrections and corrections of
validations. A special type of corrections is cancellation which cancel previous
updates. Validations are important types of transactions, e.g. if an object has not
been updated for a long time, it might give the impression that the object has not
been checked and verified since the time of change, even if newer sources have
validated the old information [Lan93].

Using valid time-transaction time diagrams, a set of distinct transaction types
has been identified. In such diagrams, the valid time dimension is the vertical axis,
whereas the transaction time dimension is the horizontal axis. The lines separate
different lifespans of the segments, and each diagram can only be associated with
one attribute or object. The lines that are created by the different transactions are
emphasized with a fat line.

Figure 4.4 shows a 3-D version of this diagram where the attribute dimension
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is displayed as the third axis. If we name the attribute a and let its values range
from the real domain R such that the three values of the attribute displayed in the
figure are 1:0, 2:0 and 3:0 respectively. Then the following three transactions on a
are displayed:

� Transaction 1 at tt1: The attribute was created at valid time vt1 with a value
of 1.0.

� Transaction 2 at tt2: The attribute changed gradually from 1.0 to 2.0 during
the valid time period from vt2 to vt3.

� Transaction 3 at tt3: The attribute changed instantaneously from 2.0 to 3.0
at valid time vt4.

Using such diagrams, we can identify and visualize a number of transaction
types, as illustrated in Figure 4.5:

� Update of attribute — this is the simplest of all transactions which means to
change one or more attributes of an object to reflect some real world change.

� Update too late — two updates on the same attribute (right) or different
attributes of the same object (left) are made in wrong order.

� Update with known valid time end — an update where we know for how
long the new data will be valid.

� Creation — add a new entity to the database.

� Logical delete — an entity has bee destroyed.

� Cancellation — an earlier update was completely wrong, as e.g. updating
the wrong entity. Cancellations are a special type of corrections.

� Correction of attribute — correct an earlier update where one or more attri-
butes were incorrectly entered.

� Correction of valid time — correct an earlier update where the valid time
was incorrectly entered.
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Figure 4.6: The bitemporal constructs of the Extended History Graph model

� Correction of attribute and valid time — correct an earlier update where both
the valid time and at least one attribute were incorrectly entered.

Combined with the different types of changes described in Section 4.5.3, we
get a complex set of different change-transaction types.

4.5.8 Conceptual Modelling of Bitemporal Tropology

For simple functions over bitemporal space, the bitemporal tropology can be dis-
played in form of transaction-time / valid-time diagrams as explained above. To
capture the relationships between the different segments of a bitemporal attribute,
in addition to more complex change types involving more objects, five new sym-
bols are introduced to the Extended History Graph notation. These are, as shown in
Figure 4.6, the transaction segment which is displayed as a diamond, the transac-
tion link which links the inputs and the outputs of a transaction which is displayed
as a grey arrow, and three types of cancelled links. The transaction link connects
the dynamic and static segments involved in a transaction. The cancelled links are
indicated with arrows that have been ‘crossed out’ by an ‘x’.

An example of the bitemporal constructs of the extended history graph lan-
guage is provided in Figure 4.7. This figure shows three transactions on the at-
tribute a and three changes:

� Transaction 1 at tt1: a is created at valid time vt1 with the value of A.

� Transaction 2 at tt2: a has changed to the new value of B at valid time vt3.

� Transaction 3 at tt3: new information is added that a actually had the value
C from valid time vt2 until it changed to the value B at valid time vt 3.
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Figure 4.7: A Sample Extended History Graph schema

The link from the static segment A to the dynamic segment v3 is therefore
crossed out since that passage never really occurred, but was a result of an
update in wrong order.

4.6 Implementing the Approach Using Abstract Data Types

4.6.1 Background and Related Work

The temporal relational model represents the simplest way of implementing a tem-
poral database. In this model, each tuple is timestamped with the time interval
during which the tuple was valid [JS96]. This tuple-level versioning method is of
course sufficient in many applications, but the method also has some drawbacks.
First, the history of one logical entity is spread over many tuples in the relation,
and there are no links that connect successive versions of the same entity together.
Second, the method has no inherent notion of change, unless the database designer
creates specific relations for that purpose. And third, it is not well suited to handle
data that is continuously changing.

In general, there have been few proposed models that express data in form of
functions over time. The main problem is maybe that such an approach fits in badly
with the relational database model. The object-oriented model on the other hand,
is much more suited for such an approach, whichever [WD92] demonstrates.

In fact, data can be expressed as a function over any parameter, such as time,
space, people and map scale [Gad93b] [Mis93] [BS93]. However, two reports are
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of particular interest to the current research, viz. the work of Erwig et al. [EGSV97]
[ESG97]. In their model, real valued functions over time, called moving reals, as
well as moving points and moving regions are studied. They suggest that such
functions could be implemented by linear approximations using data points. They
prove that this model can help strengthen the expressive power of queries, e.g.
suppose that we need to determine at which time two points were closest to each
other. This query can be answered by first determining the distance between the
two points as a function over time, and then find the minimum value of this func-
tion.

The drawback of this method is that if two adjacent regions share a common
boundary, the common boundary is duplicated in each region. This is both re-
dundant and awkward to handle if the common boundary is moved, and thereby
changing both regions. One of the earliest spatiotemporal data models proposed is
the space-time composite model by Langran and Chrisman [LC88]. In this simple
model, the spatial data is kept in a traditional polygonal data structure, also known
as a polygon mesh, and each polygon is associated with one attribute history. The
drawback of this method is that the number of polygons increases exponentially
with time (whichever Saafeld’s work indicates [Saa91]) and that two adjacent poly-
gons may have partially common histories because they either belong to the same
logical entity at present, or at some past time.

A few other models have been described by Worboys [Wor92] [Wor94b] and
[Wor94a]. In [Wor94a], spatiotemporal objects are modelled using so-called ST-
complexes which are sets of ST-simplexes. Each ST-simplex is an ordered pair
hS; T i, where S is a simplex and T is a bitemporal lifespan. We have also seen
some other models, such as the amendment vector model, the time-slice model
[LC88] (the latter applicable to both raster and vector data) and the event-oriented
raster model, which is a raster model where only the changes between each time-
slice is represented [PD95].

In general, the problem is to link a base model to abstract objects where the
location of the object can be returned as a function over time. In this section we
propose a spatiotemporal model, which, in contrast to the other models, also can
handle gradual change. In addition, the topological as well as the tropological
relationships are explicitly embedded in the model.
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Figure 4.8: Dynamic and static segments of a function

4.6.2 Implementing Temporal Attributes

There are many ways of implementing a temporal attribute. Each method suit
different types of attributes. We distinguish between four types of attributes, each
of which would benefit from a different implementation:

� continuously changing attributes, which are always in a dynamic state, e.g.
temperature.

� discretely changing attributes, which are always in a static state, and where
changes are always instantaneous, e.g. bank accounts.

� attributes that are continuously changing in some periods, while static in
some other periods, e.g. the position of a ship.

� time series data which is data that accumulates over some time interval, e.g.
daily precipitation.

As indicated in Section 4.5.5, we can divide a function over time into segments
such that three different segment types can be identified. These are static segments,
dynamic segments and null-segments.

Figure 4.8 illustrates this. For the times when the function is not changing, it is
implemented by one static segment. For times when the function is in continuous
change, it may be implemented by a sequence of static segments with no duration
called data points which are linked together with dynamic segments. Dynamic seg-
ments are also used to represent instantaneous changes. This way of implementing
functions is slightly different from [EGSV97], who implement functions only us-
ing data points together with a flag that determines whether the point represent a
gradual or instantaneous change since the previous data point.
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The advantage of this model is that the dynamic segments provide the tropo-
logical relationships between states of objects, and that, since these are explicitly
given in the data structure, it is possible to assign attributes to the changes that are
not inherently a part of the object that they associate; e.g. if a building is built, it
is possible to give information about who was the entrepreneur, and how much it
cost to build the house.

Static segments are identified by an element of some domainA and a time in-
terval in I(T). Dynamic segments on the other hand are identified by two elements
in A, one for the initial state and one for the end state, together with two corre-
sponding times in T. Both dynamic and static segments may have a lifespan with
zero duration.

This way of implementing a temporal attribute can, in principle, be used to
implement all the first three types of attribute behaviour. However, in many cases
we are not interested in the dynamic segments, e.g. in temperature measurements.
It therefore makes sense to implement such attributes using a simple sequence of
data points, combined with linear or spline interpolation or approximation between
data points.

4.6.3 Implementing Temporal Sets and Sequences

In the temporal relational model, the membership of a record in a relation equals
the lifespan of that record. If the membership of some entity in another set is to be
modelled, this has to be done in an additional relation that contains only the key
attribute and the lifespan of that record; e.g. Steiner [SN97b] proposes an object-
oriented model where each object is timestamped, and the properties of an object
is kept in a so-called time-collection of other objects. The membership in the time
collection and the lifespan of each member are different, which allows an object
to have several roles, i.e. be member of several time collections at the same time.
Thus, each collection contains entries of the type hoid; lsi, where oid is the object
identifier and ls is the membership lifespan of the object.

Often, the order of the members in a set is of vital importance. Totally ordered
sets are in computer programming often implemented using array structures. We
call them sequences and regard them as sets to which we have assigned a total
order. Implementing a temporal sequence is not a trivial task, e.g. if two entries in
a sequence are swapped, then how is this to be implemented if the order-history is
to be preserved. A similar problem occurs if a new entry is inserted and the entries
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following the new entry have to be shifted up one index.
However, we believe that the simplest method is also the best. For each version

of the temporal sequence, a complete sequence of object-identifiers is stored. Thus,
for each change to the temporal sequence, a complete new sequence of oid’s has
to be made. The entries themselves are not stored in this sequence, only the object
identifiers. This way, if the entries happen to be temporal objects, then the history
of these objects are independent from their index-history in the sequence.

4.6.4 Implementing Spatiotemporal Attributes

Implementing functions over time using sequences of static and dynamic segments
is particularly well suited for spatiotemporal objects. In this article, we restrict
ourselves to a two-dimensional Euclidean plane, E 2 . We define three types of
spatial atoms:

� point — represents a 0-dimensional element. We define Sp = E2 to be the
set of all points.

� curve — represents a 1-dimensional element c which is a continuous map-
ping c : R! E2 . We defineSc to be the set of all curves in E 2 .

� region — represens a 2-dimensional element r which is subset of E 2 , having
at least one interior point. We may identify two types of regions, simple
regions which are connected subsets of E 2 , and complex regions which are
not connected. We define Sr to be the set of all regions.

Then, the set of all spatial atomsSis defined as the superset

S= Sp [Sc [Sr; (4.113)

and the corresponding set of spatiotemporal atoms becomesST.
Worboys [Wor92] describes a system of so-called ST-atoms where each ST-

atom consists of one spatial extent associated with a time interval. Since this types
of ST-atoms cannot represent spatial objects that have a gradually changing extent,
they correspond to the static segments of a spatiotemporal attribute. Thus we may
call them static ST-segments. Then, we also need to define a set of dynamic seg-
ments of spatiotemporal attributes, called dynamic ST-segments. This gives us a
system of six types of spatiotemporal segments as illustrated in Figure 4.9.
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Figure 4.9: Spatiotemporal segments
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The task is now reduced to develop a temporal polygon mesh that incorporates
the six types of spatiotemporal segments in Figure 4.9. Figure 4.10 shows an entity-
relationship model of these segments and their relationships. Here, the entities (i.e.
the segment types) are shown as boxes and the relationships are shown as lines bet-
ween the boxes. The vertical relationships in the model are predecessor/successor
relationships between the segments. The horizontal and diagonal relationships are
topological. These relationships are also temporal relationships and are therefore
marked with a ‘T’. That means that the relation between the two entities must be
a strict temporal relation, since the relation may exist only during a subset of the
time at which both entities co-exist.

All segments are associated with a bounding box in the space-time cube that
can be used to build indexes, e.g. using R-trees. The time extent of this bounding
box also represent the lifespan of each segment.



4.7. CONCLUDING REMARKS 113

4.7 Concluding Remarks

We have introduced and discussed the temporal set-theory, and we have demon-
strated its application in building temporal abstract data types. We have showed
how to construct non-spatial attributes, spatial attributes and collections or sets as
functions over time. We have also looked into the bitemporal domain, and we
have looked into the new research area that now seem to emerge from research in
temporal GIS, which we have called tropology.

We believe that, due to the wide range of applications of temporal GIS, we
must strive for a common and comprehensive foundation and a general model for
all these applications. The temporal set-theory provides a suitable framwork for
this. Hence, we can achieve many of the goals within GIS research today.
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Chapter 5

ON THE DESIGN OF AN

OBJECT-ORIENTED TEMPORAL GIS

5.1 Introduction

Before computers, information about the geographical world was stored in the form
of paper maps. However, current geographical information systems (GIS) are still
representing spatial information utilizing this traditional cartographic view. Thus,
real world objects are represented through cartographic primitives such as points,
lines and areas, or gridded areal units. These primitives are then organized within
a set of layers, where each layer represent one specific theme, such as roads and
vegetation. Although the topological relationships between objects in this model
were explicitly embedded in the data structures, the information that these data
models can convey is still limited to the features that can be depicted in graphical
form.

After the boost of the object-oriented paradigm in programming languages
(such as C++) and the following success of implementing these concepts in com-
puter aided design (CAD), graphical user interfaces and office information systems,
the object-oriented paradigm stood out as a promising approach to the implementa-
tion of the next generation GIS. But, the object-oriented paradigm merely became
a wrapper around the cartographic model.

In general, cartographic data structures have been implemented with little con-
sideration to how the information is perceived at the conceptual level. Moreover,
terms like object-based GIS and feature-based GIS are frequently used in the liter-
ature, all with similar definitions.

In this work on object-oriented modelling for temporal GIS, we adopt the view
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that the real world consists of objects and that these objects can be structured ac-
cording to the basic object model described in Section 5.2. The reason for our
enthusiasm for the object-oriented model is that it allows us to encapsulate an en-
tity and its entire history into one single object [KRS90]. Moreover, it allows us
to model geographical and non-geographical objects together with temporal and
non-temporal objects in a uniform way. The purpose of this article is to show
how to utilize the object-oriented model to model geographical objects over time,
and to show that the object-oriented paradigm provides an expressive and flexible
framework in that respect.

An important part of any information system is the database. Temporal data-
bases have been an active research field in computer science since the early 1980s.
Because of the dominance of the relational model, it was natural to choose this
model as a basis for a temporal database model, viz. the temporal relational model.
Today, this model and its variants have been described vigorously in the literature
[Tan87] [CC87] [T+93] [JS95] [JS96] [Sno92]. Recently, object-oriented tem-
poral databases have also received increasing interest. A few models have been
presented, see [KRS90] [FSG92] [WD92] [SSP95] [BFG96] [SN97b]. Addition-
ally, a significant body of research has been dedicated to the problem of object and
schema evolution in object-oriented databases [Bra93] [MS93] [Lau97] [LSW97].
This research is important to temporal databases and can, with only minor adapta-
tions, be directly incorporated into an object-oriented temporal database manage-
ment system. Therefore, we have also seen a growing interest in schema evolution
for temporal databases [KCLS95] [DGS95] [DGS97].

Also within GIS, a substantial body of research concerning temporal represen-
tations has emerged, see [Lan92] [AB90] [Peu94] [Fra94], [Wor94a]. A bibliog-
raphy of this work can be found in [ASS94]. However, this work to a large extent
still utilizes the cartographic view described above. The objective of this work is
therefore to provide an object-oriented model that describes the real world rather
than a cartographic map thereof.

The remainder of this article is organized as follows: In the next section we
describe the basic object model, and in Section 5.3 we review relevant work. In
Section 5.4 we present the temporal object model, and in Section 5.5 we illustrate
the power of the model by presenting an example. In Section 5.6 we illustrate the
utility of queries on the model, and finally, in Section 5.7, we sum up and indicate
directions for future research.
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5.2 The Basic Object Model

In the literature, several different variants of the object-oriented paradigm exist. In
this section we provide a description of the basic object model as it will be used
here.

An object is considered to be an abstract representation of some real world
entity. An object encapsulates a set of attributes describing the internal state of the
object. An object also has a set of operations or methods. The operations together
with the attributes identify the properties of an object. An operation can be an
observer which reports on the state of the object, or a mutator which is changing
the state of the object. The attributes are usually hidden to the outside world,
and clients can only access the objects through the operations, which is called the
interface of the object. Thus, encapsulation is also called information hiding.

Together with this construction, the object-oriented paradigm defines a set of
four hierarchical abstraction mechanisms:

� Classification — objects with a common behaviour and the same set of att-
ributes are grouped together in classes. A class consists of an intent and an
extent sharing the same name. The intent defines the common set of opera-
tors and sets up a state space for the objects. The extent is the set of objects
belonging to the class. An object who is a member of an extent of a class, is
said to be an instance-of that class, e.g. Norway is an instance of a monarchy.

� Generalization — classes with similar behaviour are grouped into higher
order classes using a mechanism called inheritance. The higher order class
is called a superclass while the lower level classes are called subclasses. An
object-oriented system may allow multiple inheritance which means that a
class can have several superclasses, or it may allow only single inheritance
which means that a class can only have one superclass. Subclasses are related
to their superclass by an is-a relationship, and by relating every classes to
each other, a class hierarchy is formed. An instance of a class is also an
instance of all superclasses of that class, e.g. a monarchy is a country, and
hence, Norway is also an instance of a country.

� Association — several objects may be related to each other in an is-
associated-to or is-member-of relationship. Association is, roughly speak-
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ing, a similar concept as the relationship concept in the ER-model, e.g. a
country may be a member of the European Union.

� Aggregation — complex objects may be built up from other part objects
which have their own set of attributes, and may again be built up from other
part objects. Thus, aggregation is a stronger relationship between objects
than that of an association. Part objects are related to their owner objects
through a has-a or part-of relationship. This relationship form a directed
graph called class-composition hierarchy which is an orthogonal concept to
that of a class hierarchy, e.g. a monarchy may have a prime minister and a
monarch, both of which are instances of the class person.

In object-oriented systems, any real-world entity is uniformly modelled as an
object. In addition, all objects are associated with a unique object identifier which
is used by the system to identify and retrieve the object.

5.3 Temporal Object-Oriented Databases and Temporal GIS

Object-oriented databases are based on the basic object model, or some variant of
this, and provide persistent storage for objects and their schema [Kim90]. In such
databases, objects can be stored or referenced in collections or sets coupling the
object-oriented databases tightly to the set theory. However, the coupling between
the set-theory and the object model is not as strong as it is between the set-theory
and the relational model. Nevertheless, sets can be used to build complex objects,
to store associations between objects, or to store collections of objects.

Over the last years, a substantial body of work has been dedicated to the design
of object-oriented temporal databases. All of the important issues have been dealt
with and are well understood, but no proposed model integrate all issues into one
model. In the following, these concepts will be described along with references to
related work.

There are at least two ways to implement temporal objects; either by using
object-level versioning, where each object keep its history in a list of past (or pos-
sibly future) object versions, see [FSG92] [SN97a], or by using attribute-level ver-
sioning where each object keeps a separate history of each of its attribute, see
[SSP95], [BFG96] [EGSV97]. Because both methods provide the same semantics,
and since the internal representations of the objects are hidden to the outside world,
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both methods may co-exist in the same database [WD92]. However, in many situ-
ations it makes sense to group and version attributes in clusters such that attributes
that are updated together (e.g. the attributes of an address), are also versioned to-
gether (i.e. in a synchronized manner) [JS96].

However, the attributes are not the only part of objects that may change over
time. Association and aggregation between objects may also change over time. We
may have several types of temporal relationships between entities, depending on
their semantics and their relative duration over time [MSW92]. Some associations
between objects may only exist if both objects co-exist, but in other cases we may
have associations between objects at times when either or both of the objects in
the association does not exist. One-to-many, and many-to-many relationships may
be implemented in form of collections and sets, and we must carefully distinguish
between the life cycles of the member objects, and their membership lifespans (i.e.
visibility) in sets [SN97b].

Also the fact that objects may change in type has been addressed in several
papers, see [Zdo90][LSW97]. Richardson and Swartz [RS91] even recognizes that
an object may possess several classes at one time, i.e. have different roles to differ-
ent clients. Zdonik [Zdo90] distinguishes between two types of classes: essential
classes which are classes that an object can never loose once it has been acquired
(e.g. a person is always a person and can never become an elephant), and exclusion-
ary classes which can only be acquired upon creation time and which can never be
reacquired once they are lost (e.g. a person may start out as a child, but can never
be a child again once it has lost that class).

Databases are often exposed to evolution on the schema level. This may be
the result of bad schema design, the domain being modelled is evolving, the orga-
nization using the database is changing, laws and legislations have been changed,
or independent databases need to be integrated [Bra93]. Schema evolution is a
very important concept of temporal databases since historical data always should
be studied in context with the rules and the schema current at the time in question,
see [DGS95] [DGS97] [MNP+91]. Changes at the schema level should be done
such that (1) objects that already exist in the database are available through the new
classes, and new objects should be available through existing classes, and (2) the
other objects (i.e. clients) existing prior to the modification should be compatible
with the new classes. Several methods exist [Bra93], with one attractive method
being to specify new classes simply by subtyping from existing classes.

Although, some methods outline that modification is to be kept at the class
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level, Lauteman [Lau97] proposes a method where different versions of the whole
schema is kept in a schema derivation DAG 1. This method has many similari-
ties with model versioning mechanisms found in the CAD systems today and the
method also represent a branching view of time.

Some work has also been done for schema evolution in temporal (relational)
databases. DeCastro et al. [DGS97] have identified two basic solutions for schema
versioning in temporal relational databases: The single-pool solution where each
version of the same class shares the same extent, and the multi-pool solution where
each version of the same class has its own extent. Related to temporal object data-
bases, Kim et al. [KCLS95] study possible forms of evolution to the schema in
a temporal database, indicating a number of change operations to the database
schema.

The change and behaviour of objects in temporal systems is also an impor-
tant perspective of temporal databases. Chen et al. [CLL96] argue that the be-
haviour history should be stored together with the state history of objects, and ex-
plicit links between predecessors and successors should be provided. Mathiassen
et al. [MMNS94] also state that the events that are associated to an object should
be identified for each object class. Sometimes, new abstract classes representing
events have to be constructed in order to incorporate all applicable events.

However, the behavioural aspect of objects are usually expressed in forms of
state-transition diagrams. Rumbaugh et al. [RBP+91] and Martin [Mar93] pro-
vide simple models, whereas Coleman et al. [CHB92] presents a system based on
Statecharts [Har87], where the expressive power is increased by providing AND
and XOR decomposition mechanisms. An example of a XOR decomposition is
provided in Figure 5.1. A more complex approach to analyze object behaviour is
also presented in [LKH94], but their notation is not as intuitive as the other be-
havioural models. Also related to the behaviour of objects, is a set of constraints
that an object must comply to. Alagic [Ala97], has introduced such a constraint
language based on Horn-clauses.

The concept of a query language was earlier an alien concept in object-oriented
databases [Kim90]. Instead, the necessary functionality would be embedded in the
methods of objects. But now, several query languages for object-oriented databases
exist; they are either extensions of SQL-like languages or they are based on the set-
theory. A query language also depend upon an algebra in order to express certain

1DAG: Directed Acyclic Graph
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conditions. Several algebras for the querying and retrieval of objects in object-
oriented temporal databases have been proposed, see [RS93b] [RS93a] [SN97b].
These algebras are also related to the set theory, and include operators such as
temporal union and temporal intersection.

Also within the field of geographical information systems (GIS), a great deal
of effort has been spent to extend GIS with temporal modelling capabilities.
Several models have been proposed for the spatiotemporal component such as
the space-time composite model [LC88], the event-oriented spatiotemporal data-
model [PD95] and the Triad model [PQ96]. Worboys [Wor94a] suggests a ‘spatio-
bitemporal’ model using so-called T-complexes, which are collections of simplexes
that have been assigned a bitemporal lifespan.

Also some object-oriented data models, i.e. class hierarchies, have been sug-
gested for temporal GIS, see [Ham94], [VBH96] [BVH96]. Ramachandran et
al. [RMD94] introduce a model-driven approach using object versioning and tem-
poral relationship objects. Another approach that defines a set of temporal and
spatiotemporal attributes for the construction of abstract data types as functions
over time [ESG97], is of great interest to the current research. However, com-
mon to these proposals is that they focus on the realization of the spatiotemporal
component of data, and to varying degree, leave the behavioural, semantical and
topological aspects of the data undecided.

Within the GIS community, we have also seen an increasing work on the issue
of studying the behavioural and the change aspect of geographical information.
Egenhofer and Al-Taha [EA92] give a thorough investigation of changes in topo-
logical relationships between continuously changing regions, and Frank [Fra94]
investigates temporal relationships in terms of partial orders and semi-orders. Re-
cently, we have also seen a number of taxonomies of change types, see [Ren96]
[CT96] [CT95] [HE97]. Claramunt and Thériault [CT96] and Hornsby and Egen-
hofer [HE97] emphasize the qualitative aspect of changes, neglecting the durational
aspect (or they assume that changes are instantaneous). In some models, such as
[CT96] and [Ren96], the change object has been identified as a distinct object from
that of a state object (object version).

Related to changes is also the concept of an update language. Lagorce et
al. [LSW97] propose an update mechanism where both operators for updating spe-
cific instances and for updating the database schema have been included. Similar
constructs have been proposed by Rose and Segev [RS93b] and by Zdonik [Zdo90].
In general, we have seven types of update operators for object instances: add-
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object (constructor), delete-object (destructor), modify-object, associate-object,
cut-objects (delete association), add-class (add class instanceship), and delete-
class (delete class instanceship).

In the following section, we propose an object-model for temporal and spa-
tiotemporal applications where we try to integrate as many of these aspects as pos-
sible in one unified model. First, we outline the basic concepts of the temporal
model, and then we define a basic class hierarchy for according to these concepts.

5.4 The Temporal Object-Oriented Model

In this section we synthesize the work described in the previous section and pro-
vide a general taxonomy of the concepts of an object-oriented temporal database.
Generally, a system of objects is characterized by many properties, all of which
may change over time.

5.4.1 Object and Attribute Behaviour

Figure 5.1 shows a state-transition diagram of a temporal object or attribute (in a
general sense, an attribute is also an object) using Coleman’s ObjectChart formal-
ism [CHB92]. According to this model, a temporal object is either alive or it is
dead. If it is alive, it is either in a continuously changing state, or it is in a static
non-changing state. The transitions between each state are identified by events, and
an event is defined to have no duration. The first event of every object is its birth.
It then enters a state of being alive, either changing or static. If an object is in a
static state, it may start to change and enter the changing state. When an object is
changing it may stop to change, i.e. stabilize into a static state. When an object is
in a static state, it may also be subject to an instantaneous change from one static
state to another.

An object ends its life by its death entering the state of being dead. An object
can either be in a static state or in a changing state when the death occurs. When
an object is dead, it may become alive again by a reincarnation event.

The model provides a general framework for modelling three kinds of object
or attribute behaviour. These are objects that are (1) always in a static state and are
only exposed to sudden changes (e.g. the borders of parcels in a cadastral database),
(2) objects that are always in a dynamic or changing states (e.g. the temperature),
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Figure 5.1: An ObjectChart model of a Temporal object

and (3) objects that are sometimes in a static state and other times in a dynamic
state (e.g. the position of a ship).

5.4.2 Observing Temporal Objects

An observer of a non-temporal object can only report on the current state of the
object. For temporal objects, we may identify several types of mutators: The most
obvious is to report on the state of the object (or an attribute) at a specific time, but
we may also observe properties that are not associated with a single point in time.
We have identified at least five types of observers of temporal objects:

� The atemporal observer — which report to the client about properties of
temporal objects that is not inherently temporal, e.g. to report the state of a
non-temporal attribute.

� The snapshot observer — which reports on the state of an object or attribute
at one specific time. This operator must have one parameter specifying the
time of interest.

� The behavioural observer — which report on inherently temporal informa-
tion without having to specify any time parameter, e.g. to find the age of an
object, or the frequency if the object has periodic fluctuations.

� The time-interval observer — which reports on the change or difference in
state of an object during a time interval, e.g. how much or how quickly did
this object change during a time interval.
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� The history observer — which returns the entirety or a part of the history of
one or more attributes, possibly as a function over time.

� Other observers — we do not attempt to make any further classifications, but
accept the existence of observers that are more complex particularly involv-
ing comparison with other objects.

5.4.3 Object Evolution and Mutators

In general, mutators correspond to the transitions or events of Figure 5.1. We may
have three basic types of mutators. Two types of mutators are already standardized
within most object-oriented programming languages, viz. the constructor and the
destructor of the object. In addition, we need external operations, such as the C++
operators new and delete, to make the actual creation of the object, and to establish
the successor predecessor relationship between objects.

In case of the third type of mutator, the modifier, we distinguish between four
types of modifiers:

� those who change the state or the rate of change of the object,

� those who change the type of the object,

� those who add, remove or replace some part of the object, and

� those who change the associations between objects.

All these mutators need time parameters identifying the real-world time of the
changes in question. The transaction time for these mutators is supported by the
system itself, while the valid time must be supplied as a parameter to the mutator.
Subsequently, no time argument needs to be specified for systems supporting only
transaction time, but both valid-time systems and bitemporal systems need one
valid-time argument to be passed to the mutators.

Change in State

The attributes of an object may be changed and observed independently. A modifier
that reports on a state change to the object may do this to all its attributes or just
to some, usually according to how updates are synchronized [JS96]. Basically, for
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each attribute, there should be one mutator for each transition in Figure 5.1. A
temporal object should therefore have the following mutators which influences the
state of the object.

Constructor(time, attributes : : : ) which is called automatically upon creation
of the new object, e.g. by a new operator. The parameters to this operation
must be the valid time of the creation, and the values of the initial state of
the object. This operation should also take care of the reincarnation of the
object.

Destructor(time) which is called automatically upon destruction of the object,
e.g. by a delete operator. A valid time parameter must be provided as a
parameter to the operator.

Attributes are also objects, and those types of attributes that may change grad-
ually should also have the following operations:

StartChange(time, attributeName) Specify that an attribute (or group of attribu-
tes) should change from a static state to a dynamic state.

StopChange(time, attributeName, newValue) Specify that an attribute (or gr-
oup of attributes) should change from a dynamic state to a static state. A
new value of the attribute should be specified for the new static state of the
attribute.

Update(time, attributeName, newValue) Modify or update an attribute (or a gr-
oup of attributes) with a new value. If the attribute is in a static state, it is
considered as an instantaneous change at valid time time. Otherwise, it is
considered as a smooth change from the last update.

Furthermore, a mutator that operates on a continuous changing attribute may
also provide updates about the rate of change (velocity) and even rate of rate of
change (acceleration) for the purpose of more accurate interpolation and extrapo-
lation. E.g we may implement a continuous changing attribute by cubic Hermite
interpolation, which demands that a derivate (i.e. a rate of change) for each data
point must be provided.
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Change in Object Type

When an object changes in type, i.e. from being an instance of one class to become
an instance of another class, we may adopt the view that an object can possess (i.e.
be an instance of) either several classes at the same time (multi-class model), or
only one class at a time (single-class model), e.g. a river may also be the border
between two countries, which may be implemented by one cartographic object
possessing two classes, border and river.

We suggest three mutators for changing the class as suggested by [LSW97] and
[Zdo90]:

AddClass(time, className) In the multi-class model, AddClass adds a new class
to the object. In the single-class model, AddClass moves down in the class
hierarchy. A call to this operation may imply that one or more new attributes
needs to be added to the object.

DeleteClass(time, className) In the multi-class model, DeleteClass deletes a
class (or role) from an object. In the single-class model, it moves up one
step in the class hierarchy, in which no class name need to be specified. A
call to this operation may imply that one or more attributes of the object
‘die’.

ReplaceClass(time, oldClass, newClass) Migrate from one class to another class.
This may imply that one or more attributes of the object ‘die’ or are added to
the object. In the single-class model, it not necessary to specify the oldClass
parameter.

In a multi-class model, the history of all the classes that an object possessed
during its life time can be expressed in terms of a temporal set. An important
constraint to these mutators is that we may not allow an object to possess less than
one class.

It is also natural to restrict changes of object types to be of the instantaneous
type. Although, gradual changes of type may be common in nature (e.g. an old dirt
road may gradually over-grow to become a path), we do not have any support for
this in our model.
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Change in Aggregation and Association

We assume that a relationship between two objects is a crisp relationship. In other
words, we cannot have gradual changes in aggregations and associations amongst
objects. Both aggregation and association may be implemented as temporal sets,
and the operations to include a new member or to secede an existing member are
essential operations pertinent to these matters [SN97b]; e.g. a country may be a
member of the European Union, and the members of European Union may be
implemented as a temporal set. By using fuzzy-set theory it is also possible to
model gradual changes in relationships.

5.4.4 Validations and Corrections

If an object has not been changed for a long time, it may give the impression that it
has not been updated in a long time, even if newer information validates its current
state [Lan93]. We therefore need an operation to validate the current state of an
attribute (or group of attributes).

On some occasions, we may also need to make corrections to earlier updates
if they were wrong. A special type of corrections is the cancellation which com-
pletely cancels an earlier update. A correction may apply to an earlier update, an
earlier correction or cancellation or a validation. Cancellations and corrections can
be queryable if the system has a bitemporal database.

5.4.5 Class Evolution

If we need to modify a class intent, we cannot allow a destructive approach where
the old version of the intent, and hence also the database schema, is lost. We should
always be able to study historical data in relation to the schema and the associated
constraints existing at the time in question, e.g. if the European Union introduces
new requirements for aspiring members of the Union, it must be reflected in the
schema history. Otherwise, it would lead to inconsistence if existing members do
not meet the new requirement.

As the rules and constraints may be programmed into the operations of the
classes, we must have some mechanisms to record the history of the intent of each
class. In general, we may outline four possible solutions:

� Property-level versioning — For each modification to a property of a class,
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a new version of each modified operation and attribute definition is added to
the class history. Thus, each class records a history of each operation and
attribute type; a method that is akin to the attribute-level versioning method.

� Intent-level versioning — For each modification to a class, a complete new
version of the class intent is recorded in the class history. Hence, the model
is akin to the object-level versioning method. All instances of the class are
always treated in relation to the intent current at the time for which the object
was inspected.

� Schema-level versioning — For each modification to a class, an entire new
version of the database schema is created. This model is therefore akin to
the database-level versioning method.

� Universal classes — When a modification to a class needs to be made, a
new class is made by making a subclass (or a superclass) of the existing
class. There is no versioning of classes or schema. When a new class has
been added, e.g. by subtyping from the ‘old’ class, members of the old class
are changed to become members of the new class. This way, we can avoid
inconsistency between the class extent and the class intent, if the intent is
changed without due consideration to the extent. This is the simplest and
most consistent of the schema versioning mechanisms. With this method, it
is always clear which class (or classes) an object should be associated with
at each time.

It seems obvious that with temporal databases, since the history of each object
is captured (including the type history), many of the problems of schema evolution
in object-oriented databases can be solved. A class that an object possessed at a
particular time can always be accessed through that class for that specific time. In
non-temporal databases, one single instance of a class might have to be compatible
with many versions of the same class. But as long as the class membership history
is stored for each object, we do not have to worry about compatibility with existing
objects when designing a new class. We therefore advocate the universal class
approach, since this is the simplest of the methods. First, we do not have to create
a class-versioning or schema-versioning mechanism. Second, we do not have to
associate each class or class version with a lifespan. Third, we avoid much of
the complexity related to the fact that old objects are not directly comparable to



5.4. THE TEMPORAL OBJECT-ORIENTED MODEL 129

String

Integer

Real

SpatialAtom

Time

Pointer

Line

Region

Point

Boolean

PrimitiveType

TPrimitiveType TString

TReal

TInteger

TBoolean

TPointer

TTime

TRegion

TLine

TPoint

TOrderedSet

OrderedSet
Set

TObject

TSet

TimeSet

TSpatialAtom

Object

Figure 5.2: The Basic Class Hierarchy

current objects because they relate to different version of the schema. And fourth,
two objects may possess different versions of the same class at the same time.

Schema evolution may also be recorded over the bitemporal domain, e.g. if we
decide to add a new attribute to a class, say the gross domestic product for each
country for each year. Although the new class may be introduced at some time,
objects may be changed to the new class valid prior to the introduction of the class
(transaction time), if information about gross domestic products for earlier years is
available (valid time).

When a new class is created, all the instances of the old class may automatically
become instances of the new class upon creation of the new class. This corresponds
to an eager consistency maintenance. On the other hand, if e.g. an attribute has
been added, the instances of the old class become instances of the new class from
the time when values for the new attribute is provided. This corresponds to a lazy
consistency maintenance.
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5.4.6 The Basic Class Hierarchy

Figure 5.2 shows the basic class hierarchy of our model. The generic class Object
has three subclasses, PrimitiveType which is the superclass of booleans, integers,
reals, strings and so on, Set which provides a mechanism to store objects in sets
or collections, and TObject which provides a generic class for all temporal ob-
jects (We use the prefix “T” to denote that a class is a class for temporal objects).
The TObject class have two subtypes, TPrimitiveType which is the superclass of
primitives that are expressed as functions over time, and TSet which support sets
as functions over time.

In the following, we will pay closer attention to a few of these classes. Note
that we have only included the most basic operations for each class:

SpatialAtom Which is regarded as a primitive type that provides a generic class
for the locational and geometrical property of spatial objects. In the case of
a two-dimensional model, this property can be either a point, line or a region
object. We may also implement other types of spatial objects, such as fields
(e.g. elevation models) and fuzzy regions.

Pointer A Pointer is used to reference another object and therefore contains the
object-identifier of this object. We assume that the database system has some
means of referencing, pinpointing and retrieving a specific object accord-
ing to some identification (object identifier). The Pointer should provide
enough information for the database system to identify and retrieve the ob-
ject, whether it exists on disk or in random access memory.

Set This class implements a set, and the members of the set are instances of the
class Object. Hence, a set can have non-temporal as well as temporal objects
as members. Often, a Set contains pointers to other objects.

TimeSet This class implements a set of times and should be utilized to represent
lifespans of objects. It may be implemented differently than an ordinary set,
but it provides the same interface since lifespans are, by definition, sets of
times.

TObject This is a generic class for temporal objects. It provides the following
interface.
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class TObject is a Object
f

mutator Constructor(validTime:Time)
mutator Destructor(validTime:Time)
mutator AddClass(validTime:Time, className:String)
mutator DeleteClass(validTime:Time, className:String)
mutator ReplaceClass(validTime:Time, oldClass:String, newClass:String)
observer OID() ! Pointer
observer LifeSpan() ! TimeSet
observer Class() ! TString
observer StateOf(validTime:Time)! Object

g

TPrimitiveType This is a generic class for all temporal attributes. It should pro-
vide the following interface.

class TPrimitiveType is a TObject
f

mutator Update(validTime:Time, newValue:PrimitiveObject)
mutator StartChange(validTime:Time)
mutator StopChange(validTime:Time)
mutator Correct(validTime:Time, newValue:PrimitiveObject)
mutator CancelUpdate(validTime:Time)
mutator Validate(validTime:Time)
observer StateOf(validTime:Time)! PrimitiveObject

g

TPointer This class can be utilized to implement one-to-one temporal relation-
ships between objects. The pointer may point to different objects at different
times, and the history of which objects it pointed to at which time is recorded
within the pointer itself, e.g. a monarchy may have a TPointer that points to
the succession of monarchs of the country.

TSet This class implements a temporal set. It can be utilized to store both temporal
and non-temporal objects. A temporal set of pointers may be utilized to
implement a one-to-many or many-to-many relationship between objects.
TSet have the following interface:
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class TSet is a TObject
f

mutator IncludeObject(validTime:Time, newMember:Object)
mutator SecedeObject(validTime:Time, member:Object)
mutator DoForEach( Procedure(member:Object))
observer StateOf(validTime:Time)! Set
observer MembershipLifespan(member:Object) ! TimeSet
observer FindObjects( Condition(object:Object)! Boolean)! TSet
observer NumItems() ! TInteger
observer IsEmpty() ! TBoolean

g

The FindObjects operators takes a boolean function Condition as an argu-
ment and returns all the objects in the set, where Condition(object) = true.

5.4.7 Spatial and Spatiotemporal Objects

Spatial objects (often referred to as spatially referenced objects) are types of ob-
jects that have a geometric location as one of its properties. A Spatiotemporal
object (STObject) is an object whose location may change over time. An object
may be spatial and temporal but not spatiotemporal if the object has properties
that varies over time, but these are not spatial properties. As illustrated in Fig-
ure 5.3 we therefore distinguish between TSpatialObject whose location does not
change over time and STObject whose location does change over time. In order
to further emphasize the difference, we assign the name TLocation to the operator
that returns a TSpatialAtom and the name Location to the operator that returns a
SpatialAtom.

class SpatialObject is a Object
f

observer Location() ! SpatialAtom
g

class STObject is a TObject
f

observer TLocation() ! TSpatialAtom
g
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Figure 5.3: Spatial objects, Temporal spatial objects and spatiotemporal objects

class TSpatialObject is a TObject, SpatialObject
f

/* No need to add mode properties */
g

5.5 A Temporal Map over Europe: an Exercise in Spatiotem-
poral Modelling

Suppose that we want to make a temporal map over Europe (or even the world),
showing the history of countries, their borders, population and so on. This is a very
useful exercise, as it covers many important aspects of spatiotemporal modelling,
and the temporal object-oriented model.

5.5.1 Assumptions

In this exercise, we are going to model all countries in Europe. Each country has
a location, population, a capital, and a number of other cities. Some countries are
monarchies and thus have a monarch and a prime minister, while other countries
are republics and have a president.

Before we start modelling, we must make certain assumptions on which we are
going to base our model. These may be as follows:

� Coastlines are spatial objects that delimit countries and are regarded as static
objects. Coastlines also bound islands.

� Borders can only change instantaneously. Although borders may be more
fuzzy during wars, we assume that borders are crisply defined both in space
and time.



134 CHAPTER 5. ON OBJECT-ORIENTED TEMPORAL GIS

� The population of countries and cities changes continuously, although jumps
must be allowed when sudden changes in country borders occur.

� A country can only have one capital at a time.

� Countries and cities may change their name.

� A country may change from being a monarchy to being a republic (e.g. the
French revolution), or it may change from a republic to a monarchy (e.g.
Spain after Franco).

� The position of cities cannot vary over time, and the location of cities are
only recorded as points. Because countries change borders, a city may be in
different countries at different times, but we assume that a city can never be
in more than one country at a time. (However, it is principally nothing wrong
in assuming that some cities may lie on the border between two countries,
and thus can belong to more than one country)

� The time resolution of our database is one day, allowing us to capture the
dates of specific events.

� For the sake of modelling temporal sets, we also want to model multinational
organization such as the EU and EFTA. Both which may change name and
members over time.

5.5.2 Modelling the Temporal Database Conceptually

Figure 5.4 shows an initial model of Europe using the Object Modelling Language
(OML) of Rumbaugh et al. [RBP+91]. A country is associated with its border and
coast line. Some countries, like Iceland does not have any borders, while other
countries, like Switzerland does not have any coast line. Many countries have
many borders, one border for each neighbouring country, and a border separates
two countries. However, since we must allow some borders as be the border of
Europe, some borders may only bound one country in the database. A coastline
may also bound an island as well as the mainland. A country may therefore have
many coast lines, and a coastline may bound several countries.

In Figure 5.5, we have added temporal and spatial markers on the model in a
similar way as introduced in the ERT language ([MSW92], [TWL92]). An object
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Figure 5.4: A non-temporal conceptual model of the European temporal database
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RepublicTMonarchyT

PersonT

CountryST

TT PresidentMonarch T
Prime

Minister

T

Figure 5.6: Monarchs, Prime Ministers and Presidents are just human after all

class that is T-marked has properties that varies over time. An object class that is
S-marked is a spatial object and thus has a location. If an object class is ST-marked,
it means that the location of the object may also vary over time. An object class
may be both T-marked and S-marked, but not ST-marked, if it has a static location,
but there are other properties that vary over time. Subclasses inherit all markers
from their superclasses, and are only marked if additional properties are added that
are either temporal, spatial or spatiotemporal.

A generalization link is T-marked if the instances of the class may change in
type over time, e.g. a monarchy may change to become a republic.

An aggregation or association link is T-marked if the link may exist only during
a part of the time for which both involved objects co-exist. If, on the other hand,
a link between two temporal object classes is not T-marked, it means that the link
exists as long as both objects co-exist. If an aggregation or association link is
S-marked, it means that the link is spatially dependent, e.g. a city can only be
associated to the country where it is spatially inside.

For pedagogical reasons, we will model the persons who are presidents, prime
ministers or monarchs in one separate class. This way, as illustrated in Figure 5.6,
we are able to determine when these persons lived, and when they were president,
prime minister or monarchs.
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5.5.3 Designing the Interface for each Class

Our next step is to design an interface for each class. At this stage, we are not
interested in the internal representation of each class, but the operations and the
expected behaviour that we need for each class.

Countries

Countries are true spatiotemporal objects as both population and location change
over time. The Country class inherits the location operation from the STObject
class, but specifies the locational attribute to be of type TRegion. A TRegion may
sometimes be a single connected region if the country only comprises a single area
of land (such as Switzerland). A region may also at other times be a disconnected
complex region with many connected sub-areas such as islands or enclaves. In
either case, the region is modelled as a single object, containing the entire history
of a country’s location.

The population of a country is usually modelled as a continuously changing at-
tribute. If the population of a country has changed gradually since last update, the
mutator UpdatePopulation is used. However, if a new country is deducted from
another country, we may see a jump in the population. In this case, the Change-
Population mutator is used. The ChangePopulation mutator takes, in addition to
the valid time parameter, two population values as argument: population1 contains
the population right before the jump, whereas population2 contains the population
right after the jump.

class Country is a STObject
f

mutator UpdatePopulation( newPopulation: Integer, validTime:Time)
mutator ChangePopulation( population1, population2: Integer, validTime:Time)
mutator ChangeName( newName:String, validTime:Time)
mutator ChangeCapital( newCaptital:City, validTime:Time)
observer Name() ! TString
observer Population()! TInteger
observer TLocation() ! TRegion
observer Area() ! TReal
observer Capital()! TPointer to City
observer Neighbours()! TSet of Pointer to Country
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observer Cities()! TSet of Pointer to City
observer GetMemberships() ! TSet of Pointer to InternationalOrganization

g

We also want to find the neighbours with which the country shares a border.
This observer returns a temporal set of country pointers, referencing the countries
that were neighbours at different times.

In the database, we will have no direct instances of the class Country. Instead,
they will be either of the type Republic or of the type Monarchy.

class Monarchy is a Country
f

mutator ChangeMonarch(newMonarch:Person, validTime:Time)
mutator ChangePrimeMinister(newPrimeMinster:Person, validTime:Time)
mutator BecomeRepublic(validTime:Time)
observer Monarch() ! TPointer to Person
observer PrimeMinister()! TPointer to Person

g

class Republic is a Country
f

mutator BecomeMonarchy( validTime:Time)
mutator ChangePresident( newPresident:Person, validTime:Time)
observer President() ! TPointer to Person

g

Cities

At the abstraction level that we want to work with, it is sufficient to locate cities
to a single point. A city (according to our assumptions) can change name and the
population, but not its location, thus a city is a subclass of TSpatialObject.

We also want to find the history of which countries each city is in. This may not
be explicitly stored with each object, as it is possible to derive it from the location
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of the city and the location of the countries. However, it is not the scope of this
article to suggest how to implement this function.

Finally, we also want an operation to find out when (or if) the city has been
a capital. Again, this may not be explicitly stored together with each city object
object, as it is possible to derive the information otherwise.

class City is a TSpatialObject
f

mutator ChangeName(newName:String, validTime:Time)
mutator UpdatePopulation( newPopulation:Integer, validTime:Time)
observer Name() ! TString
observer Population()! TInteger
observer Location()! Point
observer Country()! TPointer to Country
observer IsCapital()! TBoolean

g

Borders and Coast lines

All countries are locationally bounded by borders and coast lines. Whenever we
create a new border, either of the following two situations occur: A new country is
deducted from another country (e.g. the Baltic countries separates from the Soviet
Union), or a country is split to form two new countries (e.g. Czechoslovakia splits
to form Slovakia and Czech Republic). Similarly, if a border is deleted, either two
countries are merged to form a new country (e.g. East Germany and West Germany
form Germany), or one country is annexed into another country (e.g. Sweden gets
Norway in 1814).

class Border is a STObject
f

mutator Adjust(newLine, validTime)
observer Countries()! TSet of Pointer to Country
observer Length()! TReal
observer TLocation() ! TLine
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g

class CoastLine is a SpatialObject
f

observer Countries()! TSet of Country
observer Location() ! Line

g

Monarchs and National Leaders

We choose to model prime ministers, presidents and monarchs as a type Person.
The persons are stored in a Set, and each person has a lifespan which is equivalent
with the persons real lifespan. The sequences of presidents, prime ministers and
monarchs are then referenced via a TPointer. Each TPointer, say to the Monarch,
only points to the person during which the person was a monarch.

class Person is a TObject
f

mutator ChangeName( newName:String, validTime:Time)
observer Gender() ! fMale, Femaleg
observer Name() ! TString

g

International Organizations

International organizationsare organizations such as the European Union, EFTA,
NATO and the Nordic Council. Each of these organizations may have both a name
that may change over time, and a set of member countries that may change over
time. The membership in these organizations may be both full or associate. Thus,
we propose the following interface for the InternationalOrganization class:

type MembershipType = fFull,Associateg
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class InternationalOrganization is a TObject
f

mutator AddMember(newCountry:Country,
type:MembershipType, validTime:Time)

mutator ChangeMembershipType(member:Object,
type:MembershipType, validTime:Time)

mutator SecedeMember(member:Object, validTime:Time)
mutator ChangeName( newName:String, validTime:Time)
observer Name() ! TString
observer GetFullMembers()! TSet of Country
observer GetAssociateMembers() ! TSet of Country
observer GetAllMembers()! TSet of Country

g

5.6 Querying the Database

Since we only can retrieve information about objects only via the operations, we
must be able to use these operations in queries in order to retrieve data from the
database. A problem with this approach is that the internal implementation of
the objects is not known outside the object. This makes indexing and query opti-
mization a hard task. The advantage of the approach is flexibility. In a relational
database system, the queries are limited by the attributes and the expressiveness of
the query language. But with an object-oriented database, it is possible to add new
operations (i.e. observers) to the classes during implementation in order to support
specific queries needed for a particular problem. This is valid whether some tradi-
tional query language (e.g. SQL-based), Tomlin’s map algebra [Tom90] or Qian’s
visual query language [QP98] is used.

For example, using the temporal object-oriented query language (TOOSQL)
[RS93a], we may try to list all countries in Europe whose borders have not changed
since 1900. One naive way to do this is to find all countries whose location in 1900
is identical to the location now.

SELECT A.Name(now)
FROM A:Country
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WHERE A.Location(1900) = A.Location(now)

However, this approach is not bullet-proof as some countries may have changed at
some time after 1900, but changed back at a later time. Alternatively, we could use
the 8 or 9 qualifiers to check whether that the location is identical at all times since
1900

SELECT A.Name(now)
FROM A:Country
WHERE 8t 2 [1900; now) : A.Location(t) = A.Location(now)

This approach is of course expensive if we have to check all of the approxi-
mately 36000 days since 1900. Instead, temporal objects can be equipped with a
LastChanged observer, which returns the last time when the object changed. An
object that is in continuous change would return the current time. The final query
then becomes:

SELECT A.Name(now)
FROM A:Country
WHERE A.Location.LastChanged() < 1900.

Another example is to find all cities whose population at some point decreased
after 1900. One way to do this is to take out an interval of the population function
by the WHEN clause, then find the derivate of this interval with respect to time,
and finally find out whether this was negative at some point. Thus, we provide
a Derivate and IsNonNegative function to the TInteger class. The query then
becomes as follows:

SELECT A.Name(now)
FROM A:City
WHEN [1900.01.01, now)
WHERE A.Population.Derivate().IsNonNegative() = false.

The object model that we have presented so far, is by far complete. In other
words, we have supplied each object class with only the most basic operators. But,
in order to support some particular query at hand, it is easy for the developer to add
new operators for a specific class by subtyping from existing classes.
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5.7 Concluding Remarks

In this article we have discussed the fundamentals of a temporal object-oriented
model and provided the necessary functionality for such a model in geographical
information systems. Our focus has been on an overall level, rather than focusing
on implementational details. We have identified important object classes such as
temporal and spatiotemporal objects, as well as temporal and non-temporal sets and
temporal pointers. We have also given an initial set of operations and have shown
the applicability of the model by an example, describing a temporal political map
over Europe.

We have shown that the object-oriented model provides a flexible and expres-
sive framework for modelling real world objects. However, based on the frame-
work described in this article, we suggest that future research should be carried
out along two directions. One direction is the implementational level, e.g. how to
implement the temporal attributes and temporal sets and, not to forget, how to im-
plement the spatial data repository and the associated indexing methods. The other
direction is related to data analysis and queries, which we have only briefly dis-
cussed in this article. These topics include issues of presentation and visualization
of the query results and problems of user interface design.



144 CHAPTER 5. ON OBJECT-ORIENTED TEMPORAL GIS



Chapter 6

ON GENERALIZATION AND DATA

REDUCTION IN SPATIOTEMPORAL DATA

SETS

6.1 Introduction

Applications of digital cartography and geographical information systems often
involve huge volumes of spatial data. In order to optimize performance and read-
ability, it is important to optimize data volumes and information density in relation
to requirements of accuracy, performance and legibility of presented and analyzed
information. Generalization and data reduction methods are therefore critical com-
ponents of geographical databases.

Over the last years, a new generation of geographical information systems that
is capable of representing spatial data over time has been investigated. Since these
systems also handle historic information in addition to the current information,
they involve even larger volumes of data. Hence, generalization and data reduction
become an even more critical part of temporal databases than traditional spatial
databases.

Generally, generalization in cartography is a process that map makers success-
fully have done since the very first maps were published. When maps migrated into
computers, it was natural that the generalization process would follow. However,
although the generalization process has been a popular research topic over the past
years, it has been difficult to find good methods that makes the process more auto-
matic. In the case of spatiotemporal information, there are not many contributions
to this topic. Langran gives a brief discussion in [Lan93] while Monmonier gives
a fairly comprehensive discussion related to map animations [Mon96]. The pur-

145



146 CHAPTER 6. GENERALIZATION ANND DATA REDUCTION

pose of this paper is to present some initial ideas related to generalization and data
reduction in temporal data sets in general and spatiotemporal data sets in particular.

In the remainder of this section, we will first clarify the distinction between
generalization and data reduction and then make a brief review of operators of
cartographic generalization. Section 6.2 presents a number of applications of spa-
tiotemporal information systems where generalization and data reduction play an
important role. Section 6.3 presents the history graph notation which we are go-
ing to use to illustrate some of the ideas. And finally Section 6.4 presents some
ideas related to cartographic generalization, temporal generalization and map ani-
mations.

6.1.1 Data Reduction vs. Generalization

Normally, a distinction is made between model-oriented generalization which is
pertinent to the computer representation, and cartographic generalization which is
pertinent to the visualization process [MLW95]. Data reduction is then considered
as a sub-set of model-oriented generalization.

However, this paper will use the following distinction of what is data and what
is information: data is pertinent to computers, while information involves some
kind of human interpretation. Thus, data convey information when presented to
a user in a sensible format. In a similar way, we also distinguish between data
reduction and generalization:

� Generalization is the process of reducing the amount of information con-
veyed in a data set such that the information density (amount of information
per area unit) is kept at a reasonable level in relation to the scale, resolution
and purpose of the map.

� Data reduction is the process of reducing the volume of a data set without
(significantly) reducing the amount of information conveyed by the data or
without loss of accuracy.

Generalization and data reduction must therefore be considered to be concep-
tually different processes since their objectives are different. However, many gen-
eralization algorithms will also reduce the data volume, but not necessarily, e.g.
a line generalized using a low-pass Fourier filter [Bou89] will contain the same
number of points as the original line. Nevertheless, it is obvious that generalized
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information can be represented by less data than detailed information. It is there-
fore a good idea to do data reduction after generalization in order to optimize the
data volume as much as possible.

On the other hand, generalization may also be used to reduce the data volume,
e.g. if we have a data set that is too large for our needs, even after data reduction,
we may choose to trade accuracy and information content for reduced data volume.
Hence, a generalized data set is used instead of a detailed data set in order to get
an acceptably small data volume.

6.1.2 Generalization Operators

The process of generalization is often subdivided into a number of sub-tasks or op-
erators. McMaster and Shea [MS92] divide these operators into two main groups:
spatial transformations (10 operators) and attribute transformations (two opera-
tors):

Spatial Transformations:

� Simplification — in principle, equivalent to data reduction.

� Smoothing — to smooth out rough edges and remove spikes. This operator
is, in a general sense, equivalent to a low pass filter since it filters out low
frequency variations.

� Aggregation — to join point objects into a ‘point-group’ object or into area
objects, e.g. a group of buildings is grouped into a settlement object.

� Amalgamation — to group several area objects into a larger area object, e.g.
if several smaller settlement objects are situated close to each other, they
may be amalgamated into one larger settlement object.

� Merging — two or more parallel line objects are merged into one line object,
e.g. if a double railway may be merged into one single railway symbol.

Aggregation, amalgamation and merging are operators that join several ob-
jects into one higher-order object.

� Refinement — to remove small and unimportant objects.
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� Exaggeration — to increase the size of important features to make sure they
become visible in the presented map.

� Enhancement — to increase the size of a map symbol to make small but
important objects become visible.

� Displacement — to move objects apart in order to avoid conflicts or overlap-
ping map symbols.

Attribute Transformations:

� Classification — group objects of similar types into a higher order class, e.g.
to group grain fields and corn fields into cultivated land. If all classes are
recursively grouped together, a class hieracrhy is formed.

� Symbolization — to assign symbols to objects such that they become visible
and give an idea of the semantics of the object.

Some of these operators make sense only if the data is to be visualized. These
operators include exaggeration, enhancement, displacement and symbolization.
Therefore, these operators will be referred to as visualization operators. It is also
these operators that distinguish model-oriented generalization from cartographic
generalization, since they do not apply to model-oriented generalization.

6.2 The Utilization of Generalization and Data Reduction in
Spatiotemporal Data Sets

6.2.1 Generalization as a Tool for Data Retirement

Without control, a temporal database will grow monotonically in size because older
data are superseded, but generally not deleted. Available disk space, and perfor-
mance requirements dictates that sooner or later, data must be removed from the
database. The most intuitive way to do this, is to remove the oldest data. Langran
suggests a two-step strategy involving two levels of past: near and distant [Lan92].
The near past can for example be compactly stored on primary disk space with no
extra indexing, while distant past data can be stored on backup media on the shelf
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(such as CD-ROM disks). Retired data is then still available to the user, but to an
extra time cost.

The drawback with this method is that queries like ‘What is the full history of
this object’ cannot be answered unless retired data has been made available. A bet-
ter strategy is therefore to retire data by generalization. Based on the assumption
that requirements for accuracy and precision is lower for older data than for recent
data, we may apply a generalization strategy where the level of generalization in-
creases with the age of the data. This way, the database can respond adequately to
queries involving full histories of objects, although details of the older history may
be lost.

However, if we want to sustain accessibility to such retired data, there is a
problem associated with how to build in ‘awareness’ of data that is removed by
generalization. Obviously, awareness occupies space which again reduces the ef-
fect of the data reduction. Moreover, there is a question of the need for a one-step
or two-step retirement strategy.

Webster’s chronology of major dates in history 1 provides an excellent exam-
ple of such a generalized data set. The first events described in this chronology
are vaguely described and dated such as ‘736-716 BC: The first Messenian war;
Sparta conquers Messina’. Later in the chronology, dates are becoming more and
more accurate, and more and more events are described per year, e.g. ‘1990, Dec.
9: Lech Walesa, leader of the Solidarity union movement, is elected president of
Poland’.

6.2.2 Multiple Scale Temporal Databases

National mapping agencies often maintain map data at different scales and general-
ization levels; often one data set for each scale interval. These data sets are in many
cases updated independently, or at least manually for each map [MLW95]. Hence,
there is a gain in providing update propagation mechanisms which automatically
generalizes new updates to smaller scale data sets [Tii95].

Modelling and construction of such multi-scale databases are now subject to
an increasing research interest (such as [DTR96]). A potential problem with such
databases is that some updates should not propagate to smaller scale levels unless
a certain amount of changes has been accumulated. But, how is it possible to

1In Webster’s Encyclopedic Unabridged Dictionary of the English Language
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determine when some update needs to be propagated when the database do not
remember the data that the generalized version is based on? Having the capabilities
of a temporal system in such databases, this problem can be solved. Since such
databases also keep track of when updates are made, they can also determine when
there is time to propagate an accumulation of changes to a smaller scale data set.

6.2.3 Map Animations

When making maps legible and readable, the cartographer has to make many ad-
justments in symbolization, position and sizing of map objects. Introducing the
time as a cartographic variable, the cartographer may be faced with a whole range
of new opportunities. Viewing a spatiotemporal data set is not only carried out by
means of viewing snapshots, but also by means of animation sequences.

The animator in this case, carefully have to exploit the visual [Ber81] and the
dynamic variables [Mac94] to produce effective animations. They also need to
perform generalization not only in the spatial dimensions, but also along the time
dimension to clarify the course and development of the changes in the data set, and
to avoid flickering and potential misinterpretations.

These problems has recently been addressed by Monmonier [Mon96], who
gives a fairly comprehensive list of methods. For the comprehensiveness of this
paper, we will comment on his work in section 6.4.4, supplied with some of our
own results.

6.3 A Notation for Temporal Data

Following Mourelatos’ work in linguistics [Mou78], we propose a system with two
distinct types of entities: those objects who describe the static properties amongst
objects, and those who describe movements and changes of objects. In the sequel
we call these entities states of an object and changes. These entities can be linked
together such that a change that was applied to an object is linked with the previous
state and the next state that represent the result of that change.

In this paper, we use a Petri-net like notation called history graphs that was
originally introduced in [Ren96]. Here, a rectangle represents the state of an ob-
ject, whereas a round-ended rectangle represents the change entity. The rectangles
are displayed parallel to the horizontal time axis and the length of the rectangles
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Figure 6.1: The history of objects within a region

mimics the lifespan of the states or the changes. An instantaneous change is there-
fore indicated with a circle, whereas a snapshot of a continuous changing object
(i.e. an instantaneous state) is represented by a very short rectangle. The history
of an object is always represented by a sequence of alternating changes and states.
Every change have one or more input states and one or more output states. A
change may have several output states and one input state if the change indicate
that an object was split, or it may have several input states if the change indicate
that several objects were merged.

Figure 6.1 shows a small data set of a region that is split and merged. The rea-
son for choosing this type of notation is that we more easily can visualize gradual
changes of some types of objects which are not possible to describe as functions
over a metric space, e.g. if a house is built, the change from ‘no house’ to a finished
house cannot be interpolated or be described by a simple function.

6.4 Methods of Generalization and Data Reduction

As indicated above, McMaster and Shea [MS92] distinguish between two types of
generalization transformations: spatial transformations and attribute transforma-
tions; in the sequel referred to as spatial and attribute generalization, respectively.
For spatiotemporal data sets, we also add temporal generalization which operates
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Figure 6.2: Glaciers contract and expand due to climatic changes. Why did the
small glacier disappear at time T2?

in the time dimension. Because visualizing spatiotemporal information naturally
would involve some kind of animation, they should be treated slightly differently
than the spatial operators. Therefore, we also take out the visualization operators
and present them in a separate subsection.

6.4.1 Spatial Generalization

The application of a generalization operator depends on several factors, such as
the spatial and non-spatial characteristics of the object, as well as the surrounding
objects and context in general. The problem of spatial generalization in a temporal
data set is that these characteristics change over time. Changes between two snap-
shots that result from inconsistent results of spatial generalization may erroneously
be perceived as physical changes, while they in fact are two different views of the
same original object. Therefore, two successive snapshots (or frames) should not
be generalized independently.

In the sequel, we will discuss and give examples of the generalization transfor-
mations described in section 6.1.2, applied to a spatiotemporal data set.

Refinement and Smoothing

Generally, refinement and smoothing mean to remove information, either whole
objects or parts of objects (e.g. to remove a small narrow fjord along a coast line).
This introduces two problems: First to identify chunks of information and second,
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to determine whether these are sufficiently insignificant to be removed. A problem
is that a chunk of information can be significant at one time, while not at another
time; either because the object is changing itself or because the context changes.

Consider a glaciologist who are monitoring individual glaciers and their annual
fluctuation patterns. In a lower scale database, the glaciologist may want to mon-
itor long term fluctuations. If the inclusion of a glacier on the generalized map is
determined by the size only, as shown in Figure 6.2, it is likely that some small
glaciers will be included at some times and not at other times. This could be an
undesirable situation. It is therefore important that one consider the importance
of information chunks at a larger temporal scale such that the information is not
eliminated or simplified for shorter time periods in the data set.

Aggregation, Amalgamation and Merging

In general, aggregation, amalgamation and merging mean to group several objects
into one group object. This can introduce two problems in a temporal data set. The
first problem is how the resulting group of objects should reflect the history of the
involved objects, and the second problem is how to avoid the situation where the
same object is grouped into different groups at different times.

In the first case, the problem is basically how to deal with the problem that the
spatial extent of the group object change because elements ‘come and go’ in the
group, or that the elements themselves undergo spatial changes.

We may illustrate this problem with an example. Consider a municipality that
is mapping their city in a detailed database with houses and parcels given as indi-
vidual objects. The national mapping agencies uses this databases to create their
small scale regional maps.

Figure 6.3 illustrates this situation. In the generalized data set, this area is given
by a group object which roughly outlines the perimeter of the settlement. The
question now is: When did this area come into existence? The individual houses
were built over a time period of about one year each (shown as changes), whereas it
could typically take three years to build the whole area. Since the last three houses
were built considerably later than the other ones, we have chosen to represent the
settlement with one intermediate state (P). The changes that are associated with the
generalized area match the times when the first house was being built and when the
last house included in the area was finished.
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Figure 6.4: During flood, a single-line river can be represented as a two-line river
showing the different states of the flood

Collapse

When an object collapses in an animation, it is a sudden event although the change
that resulted in the collapse may be smooth, e.g. a city may grow in population, but
when the population has grown above a certain threshold it changes from being a
point object to become an area object.

Figure 6.4 shows another example where a power plant is monitoring their river
in order to give estimates of power production during the seasons. The national
water resource and energy administration on the other hand, operates a general-
ized database where the river in question is derived from the database of the power
plant. Normally, this river is represented as a line object, but as Figure 6.4 illus-
trates, during flood, they are interested in the expansion and the damage and uses
a two-line representation of the river. The figure shows how such a flood may be
represented spatially in the generalized database; with several states of the flood to
more accurately represent the course and development of the flood over time.
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Figure 6.5: Temporal data reduction

6.4.2 Attribute Generalization

Attribute transformations include classification and symbolization. Because sym-
bolization is pertinent to the visualization process, we will describe symbolization
in a subsequent subsection.

We view classification in temporal data sets to be unproblematic in relation to
spatiotemporal data sets. As far as we can see, there are no problems or side-effects
in the temporal dimensions, as long as the classifications is made consistently for
all time periods, and according to a predefined class hierarchy.

6.4.3 Temporal Generalization and Data Reduction

In this section we are going to consider aspects of data reduction that can be visu-
alized using history graphs. Let us consider the small data set shown in Figure 6.5
with the original data set above and the generalized set below. Studying the graphs,
we see that the change C4 has been removed, either because it was a small change
in a less significant attribute, or the duration of one of the states was short enough
to justify replacing a state with a previous or successive state. In this case, we have
chosen the state A2 to be the most representative for the period in question since
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Figure 6.6: Accumulation of small changes over time and how to represent this in
a generalized data set

it has a longer duration than A1. Furthermore, object D existed for such a short
time, it was eliminated, and similarly object E was absent for a short time it could
be ignored.

Accumulated Changes

Bringing these concepts one step further, we may also find a solution to the ac-
cumulation problem mentioned in the beginning of this paper. In general, minor
changes may not propagate to the generalized version since these changes will not
contribute significantly to the shape of the generalized version.

But, what if a series of small changes is accumulated over a long period caus-
ing the main characteristics to change over that time? To illustrate this, we may
consider the same example illustrated in figure 6.3. The national mapping agency,
receives regular updates about expanding city perimeters. But normally, none of
the updates are large enough to justify propagation to a lower scale level. But over
time, the old generalized city does not represent the city at the required precision
anymore.

Figure 6.6 outlines a solution to this problem. Instead of representing each
change individually, one may consider the city as being in a continuous and gradual
expansion. This would be represented with one gradual change having a longer
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Generalized:

Original:

Figure 6.7: Objects in an unstable state can be generalized to be in a stable static
state if the changes never changed the object significantly

duration, instead of many states punctuated by events. Intermediate states can also
be given if the changes last over a longer period to more accurately represent the
course of change. If one needs the state of a city between two states, this can be
done by linear interpolation.

Unstable States

A related problem to the accumulation problem is the situation where the changes
have not made any significant difference to an object over some time, e.g. a census
bureau is monitoring the population in their municipality and the various regions
therein. People are moving in and out of the municipality so the population changes
all the time. The county on the other hand want to monitor the population trends
in the municipalities over a longer period. A municipality which has a fairly stable
population over a period, may be represented by one single state for that period,
saving a lot of space.

Figure 6.7 illustrates this situation. The upper graph may show the states of
the population that the census bureau have in their database, while the graph below
shows the generalized data set that the county has made from the census bureau
database.

Continuous changes and intermediate snapshots

Many objects that change continuously, exhibit a smooth and often predictable
behaviour. As illustrated in Figure 6.8, in the case where the gradual change of an
object is given by frequent snapshots, one may consider removing some snapshots
if they can be interpolated from other snapshots with a sufficient accuracy. The
well-known Douglas-Peucker algorithm is typically a good candidate for such a
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Figure 6.8: Objects that change smoothly and continuously, may be given with
fewer intermediate snapshots if these can be interpolated from other snapshots with
sufficient accuracy

data reduction.

6.4.4 Cartographic Generalization and Animated Maps

Section 6.1.2 described the four visualization operators smoothing, displacement,
symbolization and exaggeration. As with the information reduction operators we
must take care when applying these in animated maps. An animated map sequence
may appear visually jarring and flickering if each map frame is generated indepen-
dently.

At least eight different approaches to conquer these problems have been iden-
tified (six of them are described in [Mon96]):

Blurred Transitioning

If an animation is displayed with a large time-scale, i.e. that there is a consider-
able time gap between each animation frame, it might be helpful too fade symbols
between two frames to diminish the distracting effect of jumping and flashing sym-
bols. This operator is equivalent to smoothing in the spatial dimension.

Linked Design

If two successive frames in an animation are generalized independently, the result
may be different, and the animation may show changes that are not really changes.
It is therefore important that the animation is built on a spatiotemporal dataset, and
that the generalization operators take the time dimension into consideration. In
fact, it is this problem that we have been discussing in the previous two subsections.
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Temporal Suppression and Smoothing

If an otherwise smooth movement or change has a spike, it may be advisable to
remove the distracting spike in the animation sequence. Also if a feature have a
quite irregular behaviour, it may be worth smoothing it out in order to emphasize
the general trend.

Chorodots

If an object is located near the border between the two pixels in the animation, it
might occur that the object is allocated to different pixels at different times. Such
jarring movement is distracting and can be avoided by using the chorodot technique
proposed by McEachren and DiBiase [MD91], where the positions of large square
dots are fixed within a grid.

Temporal Exaggeration

Exaggeration in the temporal dimension means to lengthen the lifespan of an object
or object state if they are too short to be noticed in an animation. Similarly, duration
of absence and changes can be lengthened to obtain a similar effects. Exaggeration
is also used to increase the duration of a spike in order to make sure that the viewer
discovers it.

Temporal Displacement

Two events that occur in close succession may be separated in time in order to
emphasize that the two events did not occur simultaneously, if they happend to
fall within the same animation frame. The construction of a new international
airport in Norway may be an example of this. Inevitably, such an airport will
attract companies to establish in the area. The cartographer may then postpone the
construction of related industrial areas to emphasize the fact that the building of
such areas is a consequence of building the airport (and not the other way around).

Temporal Symbolization

In 1981, Bertin published the theory about the seven visual variables [Ber81]. In-
troducing time as a cartographic dimension, we may add a number of dynamic
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variables [Mac94]. The cartographer must carefully exploit these variables when
making an animation, e.g. if an object appears, changes or disappears during an-
imation, the cartographer may want to attract the viewers attention towards the
change, by showing the event in a flashing style. On the other hand, the cartog-
rapher must also avoid attracting the attention away from other (more important)
changes; e.g. if a dam is built over a waterfall, which is an event with great con-
sequences, it is important to make this change appear dominating compared to the
construction of the associated road.

6.5 Concluding Remarks

This paper has enlightened some aspects in generalization of spatiotemporal data
sets. With the help of the history graph notation, we have demonstrated some new
aspects of the generalization and data reduction problem in spatiotemporal data
sets.

In particular, we feel that it is important to meet the challenge with increas-
ing data volumes in spatiotemporal data sets. We suggest that data reduction and
generalization methodologies should play a role in the conquest against the mono-
tonically growing size of temporal databases.

Moreover, we have also discussed some issues dealing with map animations. In
general, Monmonier has given a fairly comprehensive discussion of these matters
[Mon96], but we have supplemented his work with a couple of more operators.

We believe that generalization is inherent to cartography, and generalization
necessarily have to follow when we are migrating cartography into the temporal
domain. It is therefore important to discuss these matters, also in the context of
spatiotemporal data and information.
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Chapter 7

INDEXING AND REPRESENTING

BITEMPORAL LIFESPANS USING

BINARY TREES

7.1 Introduction

We assume that we have a temporal database that represent some part of the real
world. Thus, when changes occur in the real world, the database needs to be up-
dated. Hence, we distinguish between two time dimensions in temporal databases.
These are valid time (VT) which is pertinent to when facts are true in the real
world, and transaction time (TT) which is pertinent to when facts are current in
the database. These two times are considered to be orthogonal and time can there-
fore be said to be two-dimensional. A database system that supports both time
dimensions is called a bitemporal database [Sno92].

Introducing the bitemporal database, we may now be able to distinguish bet-
ween proactive (VT < TT), retroactive (VT > TT) and real-time (VT = TT) up-
dates. We also become able to distinguish between updates and corrections and
to explain why certain decisions became flaws if they were based on incorrect or
non-current data.

Although, research in temporal databases started to emerge in the 1970s
[Sno90], bitemporal databases have not really received much attention until the
beginning of 1990s [Kli93]. Ben-Zvi [BZ82] suggested already in 1982 a scheme
using five time stamps to capture the multidimensionality of time. However, his
pioneering work remained less known to the database community at large until
recently [Gad93a]. Some of the recent research has been dedicated to the design
of temporal and bitemporal support in query languages such as TQuel [Sno87]

163
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or SQL/Temporal [SBJS96], but only a few models have been suggested for the
representation of bitemporal lifespans and the indexing thereof. Nevertheless, a
very important contribution to the bitemporal database research is the bitemporal
conceptual data model presented by Jensen and Snodgrass [JS96].

This article deals with the problem of representing bitemporal lifespans of dif-
ferent versions of the same entity in a bitemporal database. A bitemporal lifespan
can in most cases be given as a region in TT�VT space with sides paralel to the
axis. The most common and simplest method found in the database literature is
simply to store bitemporal lifespans in terms of rectangles. Each tuple in a tem-
poral relation is associated with one rectangle, bounded by V T start and TTstart as
the lower left corner and V Tend and TTend as the upper right corner. In this way,
one rectangle describes the valid time and transaction time intervals for which a
certain fact was true. Rectangles that are unbounded in valid time are marked with
V Tend = 1 or ’forever’, while rectangles that are unbounded in transaction time
are marked with TTend = ’now’ or ’UTC’ (until changed). The following table
illustrates this with some examples.

lifesp. V Tstart V Tend TTstart TTend

L1 1985 1 1989 1991
L2 1985 1988 1991 now
L3 1988 1 1991 1993
...

...
...

...
...

However, this approach is not unproblematic as each tuple is associated with
two transaction time stamps, imposing at most two transactions for each tu-
ple [WE96]. Moreover, one logical lifespan often needs to be described by more
than one rectangle. Thus, if each tuple is given together with one rectangle, one
logical version of an entity may be represented by several tuples. On the other
hand, the advantage of the rectangle approach is that it is simple to implement and
that an indexing method for rectangles, the R-tree, already exists [KTF97].

Other methods such as Capelli et al. [CDS95], use a three-level temporal in-
dexing schema. In this method, which is illustrated in Figure 7.1, a complete valid
time-slice is stored for each transaction time. An improvement upon this method
is implemented by Nascimento et al. [NDE96]. Instead of using simple tables, the
first level is implemented using a B-tree, then each nth valid time slice is repre-
sented by another B-tree, while the remaining time slices can be accessed through
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Figure 7.1: The Three-Level Temporal Index

so-called change patches. The drawback with this method is that, usually, the
whole valid-time history of the entity must be repeated for each transaction.

Aleksic [Ale96] has presented two methods, the implicit invalidation method
and the explicit invalidation method where the corner points of the bitemporal life-
spans are stored in a backlog. In the implicit invalidation method, each entry in the
backlog contains the surrogate key for the entity and the entity version, one trans-
action time stamp and two valid time stamps (V Tstart and V Tend). In the explicit
invalidation method, each entry contains the surrogate keys along with one transac-
tion time stamp and one valid time stamp in addition to a transaction type (INS or
DEL) and a valid change type (BEGIN or END). The drawback with this method
is that it requires a linear search through the backlog for each entity version, but
the advantage is that it is compact and neat.

Kumar et al. [KTF97] implemented and compared several methods including
the bitemporal interval tree (BIT) and the bitemporal R-tree (BRT). The latter
method is inherently two-dimensional, but is based on bitemporal rectangles. How-
ever, the problem of two transaction time stamps for each rectangle is solved using
a double tree (2-R) methodology where the rectangles are stored in two trees; one
tree for the rectangles where both transaction time endpoints are known, and one
tree for the rectangles where only the left transaction time endpoint is known.

In this article, we introduce a method for representing and indexing bitemporal
lifespans called the BL-tree. The BL-tree is an acronym for Bitemporal Lifespan
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Figure 7.2: An update in bitemporal space

tree or Binary ‘L’-tree (or even BackLog tree). The BL-tree has emerged from
the idea that bitemporal lifespans could be described by spatio-hierarchical data
structures such as quad-trees or KD-trees. Instead, we will present another way
of dividing two-dimensional space: by the shape of the letter ’L’. Consider that
an update of an entity is made at a transaction time TTu concerning a valid time
V Tu. As illustrated in Figure 7.2, in the bitemporal space the new updated data
will pertain to the upper right quadrant from (TTu; V Tu), i.e. ‘inside’ the L, while
the old data pertain to the remaining area ‘outside’ the L.

The main advantage of the BL-tree is that we have a neat representation that
more conveniently and effectively represent the shape of bitemporal lifespans. In
addition, we get the benefits of hierarchical data structures and the related recursive
searching algorithms. The disadvantage of the BL-tree is that one BL-tree can only
index all the versions of one logical entity. In other words, we must create on tree
for each entity.

The remainder of this article is organized as follows: Section 7.2 presents a
simple database model and discuss the nature of bitemporal lifespans, and Sec-
tion 7.3 presents the data structure for the BL-trees together with the most funda-
mental algorithms such as inserting into and retrieving data from the tree. The final
section concludes with some thoughts concerning possible future developments.

7.2 Updates and Bitemporal Lifespans

Before we move on to discuss the semantics of updates and bitemporal lifespans,
we present a simple model in the following section.
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Figure 7.3: A simple bitemporal relation schema

7.2.1 A Conceptual Bitemporal Relation Schema

Conceptually, a relation according to our schema consists of a number of entities.
Each entity is given by a number of versions, where each version is associated with
a bitemporal lifespan. Thus, our schema outlines a tuple-level versioning model
as illustrated in Figure 7.3. In theory, we could keep all non-temporal attributes
at the entity-level and the temporal attributes at the version level. However, non-
temporal attributes are just as prone to human errors as temporal attributes and
should therefore also be kept at the version-level. Thus, making human errors
‘queriable’ [GN93].

In this article, we assume a discrete linear model of time where a chronon
denotes the smallest (atomic) interval of time. The time domain T may then be de-
fined as the set of all chronons. A (mono-temporal) lifespan is defined as any subset
of T , whereas a temporal interval is defined as a connected subset of T [JCE+94].
A similar distinction can be made for bitemporal lifespans and intervals. In Jensen
et al. [JCE+94] a bitemporal lifespan is not defined, whereas a bitemporal interval
is defined as a connected subset (region) of the bitemporal domain T 2, with sides
paralel to the time axis. Nevertheless, in this article we will restrict all bitemporal
lifespans of an entity version to be a bitemporal interval according to the definition
of [JCE+94].

Each version of an entity can be associated with a bitemporal lifespan that is
the time in which the version is said to exist. In principle, no version of an entity
can co-exist with another version of the same entity, i.e. bitemporal lifespans of
versions of the same entity cannot overlap. This model is unfortunately somewhat
restrictive, since it denies the implementation of a branching model of time (e.g.
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one may imagine that an entity have several possible, or alternative, versions in
a future time). However, as we will show in Section 7.3.6 this problem can be
solved. To illustrate the idea of entities, their versions and their lifespans, we will
provide three examples in the next section that should explain some typical features
of bitemporal lifespans implemented in the schema suggested above.

7.2.2 Examples

Let us consider a relation in the Widget inc. employee database which has the
attributes: name, salary and department. In the sequel, we will describe in detail
three of the employees: Caroline, Mark and Yvette.

Caroline

Caroline is our simplest and most ideal example. She worked in the company for
two and a half year, from February 1995 till June 1997. The following transactions
are associated with her entry:

1. 1995/02/07: Caroline is added to the database for the first time. She is hired
from 1995/02/01 at the administration department with a salary of 35000 per
year.

2. 1995/11/28: Caroline’s salary is increased to 37000, effective from
1996/01/01.

3. 1996/04/08: Caroline will be moved to the shipping department from
1996/05/01.

4. 1997/04/01: Caroline will be leaving the company at 1997/06/30.

This is a simple example because all updates are made in chronological order
and no error is done when the updates are made. This gives the following set of
versions for Caroline with the lifespans, which are identified by the surrogate key,
shown in Figure 7.4.

lifesp. name department salary

1 Caroline Administration 35000
2 Caroline Administration 37000
3 Caroline Shipping 37000
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Figure 7.4: Bitemporal lifespans

Mark

Mark is a slightly more complex example as the database administrator failed to
register that he was transferred from the Loading department to the Shipping de-
partment before his salary was increased from January 1995. So the following
transactions are associated with Mark:

1. 1994/05/04: Mark is hired at the loading department with a salary of 30000
from 1994/05/01.

2. 1995/01/18: Mark’s salary is increased to 32000 from 1995/02/01.

3. 1995/01/23: Mark is moved to the shipping department from 1995/01/01.

This gives the following set of versions for Mark with the surrogates identifying
the version’s lifespan in Figure 7.4:

lifesp. name department salary

4 Mark Loading 30000
5 Mark Loading 32000
6 Mark Shipping 30000
7 Mark Shipping 32000

Note that, despite that we only made three transactions, there are four versions.
This is because two versions had to be added for the last transaction. Also, note
that version associated with lifespan 5 is a false version, because its lifespan has no
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open end to the right. This means that (as far as we know now) the version never
had root in reality: Mark never worked at the Loading department with a salary of
32000.

Yvette

Yvette is the most complex example, not only because she was supposed to work
at the company for only one year, but also because the database administrator mis-
spelled her name when she was first entered in the database. In addition, her period
was extended for another year because she was doing such a great job. Hence, we
have four transactions associated with Yvette:

1. 1993/01/04: Yvette is hired at the Marketing department with a salary of
38000 for one year: 1993/01/01 - 1993/12/31. However, her name was mis-
spelled ’Evette’.

2. 1993/01/12: Yvette’s name is corrected from Evette to Yvette.

3. 1993/10/13: Yvette is hired for another year, till 1994/31/12.

4. 1994/05/11: Yvette’s salary is increased to 40000 for the last six months,
from 1994/06/01.

This gives the following set of versions for Yvette with the surrogates identify-
ing the tuple’s lifespan as shown in Figure 7.4:

lifesp. name department salary

8 Evette Marketing 38000
9 Yvette Marketing 38000
10 Yvette Loading 40000

Again, we note that version 8 has no open end to the right, and therefore is a
false version.

7.2.3 Transaction Types

In the examples above, we have seen a number of different transactions types such
as creation, logical delete, updating and correction. Formally, we may have up-
dates, corrections and validations. Corrections may apply to all three types of
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transactions; that is, correction of updates, correction of corrections and correc-
tions of validations. A special type of corrections are cancellations which cancel
previous updates. Validations are important types of transactions, e.g. if an object
has not been changed for a long time, it may give the impression that the object
had not been updated since the time of change, even when newer sources validate
the old information [Lan93].

In the following, we present a taxonomy of some common transaction types as
illustrated in Figure 7.5.

� Update of attribute — This is the simplest of all transactions which mean to
change one or more attribute of an entity to reflect some real world change.

� Update too late — Two updates, either on the same attribute or on different
attributes, are made in wrong order.

� Update with known valid time end — An update where we know for how
long the new data will be valid.

� Creation — Add a new entity to the database.

� Logical delete — An entity has ceased to exist.

� Cancellation — An earlier update was completely wrong, as e.g. updating
the wrong entity. Cancellations are a special type of corrections.
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� Correction of attribute — Correct an earlier update where one or more attri-
butes were incorrectly entered.

� Correction of valid time — Correct an earlier update where the valid time
was incorrectly entered.

� Correction of attribute and valid time — Correct an earlier update where
both the valid time and at least one attribute were incorrectly entered.

7.3 The BL-tree

In this section we explain the principle of BL-trees and describe the most funda-
mental algorithms: how to search for a version, how to build a BL-tree and how to
query a bitemporal region.

7.3.1 The Principle of the BL-tree

The BL-tree is an extended binary search tree where every node has two children
or is a leaf node. One BL-tree represents the bitemporal lifespans of all versions
of one single entity. Each change to that entity is represented by a non-leaf node
or tree node identified by a (TT; V T )-pair. All lifespans are represented by leaf
nodes and each leaf node is associated with the version pertaining to that lifespan.
A tree node divides the bitemporal space in two by the shape of an ’L’ with the
corner of the L located at (TT; V T ). Every lifespan that exists ‘inside’ the L (i.e.
the upper right quadrant) is in the right subtree, while those who are ‘outside’ are
in the left subtree.

Figure 7.6 shows the BL-trees of Caroline, Mark and Yvette respectively. Tree
nodes are shown as square boxes and labeled with capital letters A, B and so forth.
The leaf nodes are shown with circles and are numbered according to the examples
in the previous section. As indicated in the figure, null-pointers are pointers to
bitemporal space for which the entity did not exist, and are shown in the figure
with an upside-down ‘T’, e.g. the first tree node (the one that appears at the lower
left of the tree) of each entity will always have a null left pointer because the entity
did not exist prior to being added in the database for the first time.
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Figure 7.6: A sample of BL-trees

7.3.2 Searching a BL-tree

Once we have built a BL-tree, searching for a specific version is easy, e.g. we
may ask, what was the state of Caroline at V T=1997/01/01 as far as we knew at
TT=1996/01/01, e.g. by using TQuel [Sno87] the query would become as follows:

retrieve *
where Employee.name = “Caroline”
when 1997/01/01
as of 1996/01/01

The result, 2:[Caroline,Administration,37000], is of course wrong in the sense
that Caroline worked at the Shipping department at that (valid) time, but at
1996/01/01 we did not know (yet) that she would be transferred from the adminis-
tration department. Nonetheless, the searching algorithm is a simple binary search
algorithm as shown below:

function Search( root :pointer; TT, VT :time) ! ID
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Figure 7.7: The principle of inserting nodes in increasing order into a tree

f
if (root 6= null)
f

if (root is leaf node)
f

return root!ID;
g
else if ((TT � root!TT) and (VT � root!VT))
f

return Search( root!right, TT, VT);
g
else
f

return Search( root!left, TT, VT);
g

g
return null;

g

7.3.3 Building BL-trees

The way we want to build the tree is to always have a tree that is reasonably bal-
anced. A standard insertion algorithm is unfortunately not going to work because
new nodes will, with a few exceptions, always appear inside existing nodes, and
thus produce a degenerated tree. Instead we could use AVL-trees. But, since we
cannot rotate any arbitrary pair of tree nodes in BL-trees, and since the nodes are
inserted in an near-sorted order, we decided do develop our own insertion algo-
rithm.
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Figure 7.8: Two situations when insertingB in to a BL-tree whose root is A

The way we have implemented the insertion algorithm is by building the tree
in a manner illustrated in Figure 7.7. The key issue of the insertion algorithm
is the concept of full trees. A full binary tree is a tree that is either empty with
height h = 0 or is not empty with height h > 0, and where both subtrees are full
with height h � 1. Our approach to this algorithm is to provide each tree node
with two counters that give the total number of nodes in the left and right subtree
respectively.

With this algorithm it is easy to see that, for all nodes, the number of nodes
in the left subtree will always be larger or equal to the the number of nodes in
the right subtree. Thus, when the number of nodes in the left and right subtrees
become equal, the tree is full. We may therefore store the number of nodes in the
left and right subtrees as separate variables for each node. However, as Figure 7.8
illustrates, the incremental insertion algorithm works for BL-trees only when new
nodes that are inserted are inside existing nodes (a). Since new tree nodes are
always going to be inserted with increasing transaction times, the only situation
when new nodes are not entirely inside the root node, is when the new node’s valid
time is smaller than the root’s valid time (b). In this case, the root node A is outside
the new node B, but B is not inside A. Hence, A can go into B’s left subtree, but
not the other way around. Therefore, regardless whether tree A is full or not, B
becomes the new root with A as the left subtree.

This violates the concept of counting nodes in the subtrees to determine
whether a tree is full or not. Since the number of nodes we may have in a left
subtree may be less than its capacity, a tree may prematurely be reported as full
when the right subtree is filled with the same number of nodes as the left subtree,
but has space for more. Fortunately, there is a way to circumvent this problem by
setting leftCount to the maximum capacity of the left subtree rather than the actual
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number of nodes itself.
Thus, the insertion algorithm becomes as follows:

procedure InsertNode( var root :pointer; newNode :pointer)
f

if (root = null) or (root is leaf node)
f

newNode!left := root;
root := newNode;

g
else if (root!leftCount = root!rightCount) or (newNode!VT < root!VT)
f

newNode!left := root;
newNode!leftCount := 2 * root!leftCount + 1;
root := newNode;

g
else
f

InsertNode( root!right, newNode);
root!rightCount++;

g
g

Another feature that we could easily implement is to enforce a maximum size
of right subtrees:

: : :

else if (root!leftCount = root!rightCount)
or (newNode!VT < root!VT)
or (root!rightCount� maxRightTreeSize)

: : :

This way, the tree will become lopsided which gives shorter access to the most
recent data than the older data [Kol93].

The last issue of the insertion algorithm is the leaf nodes. For every insertion
of a tree node, a leaf node must be inserted as well. Fortunately, we can insert the
new leaf node into the new tree node’s right subtree prior to inserting the tree node
itself.
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7.3.4 Using the Insertion Algorithm

The insertion algorithm outlined above, only inserts one single ’L’ into the tree.
However, many transactions need multiple nodes to be inserted, such as the update
of Mark where he was moved from the Loading department to the Shipping depart-
ment, and updates of Yvette where the V Tend was already known. At least, there
are three situations where we need to insert multiple tree nodes: When the update
or correction is made too late, when the V Tend is known, or sometimes when a
valid time is corrected.

The general algorithm for updating an attribute of an entity would therefore be
to first find all current versions that are valid during the interval from the valid time
concerned by the update and the present time. Then for each of these versions, the
attribute is updated and a new version with the updated information is added to the
three. In other words:

procedure UpdateAttribute( whichAttribute, newValue, V Tu)
f

now := CurrentTime();
foreach version existing during [V Tu �1i as of now
f

version!ChangeAttribute( whichAttribute, newValue);
BLTree!Insert( version, now, V Tu);

g
g

Similar algorithms can be developed for all types updates, corrections and can-
cellations.

7.3.5 Query Algorithms

Figure 7.9 shows five different types of bitemporal regions that we may query, e.g.
if we would like to know the history of an entity between two valid time points as
of a particular transaction time, we may perform a valid timeslice query (Q2). A
similar query can be performed for a transaction time period at a fixed valid time,
i.e. a transaction timeslice query (Q3). Ultimately, we may choose to implement
only the Q1 query since it may utilize the other four queries by allowing start and
end times to be equal and to allow�1 and 1 as valid search times.
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Figure 7.9: Different types of range queries

The bitemporal region query (Q1) looks for all versions whose lifespans in-
tersects a rectangular region bounded by TTstart, V Tstart, TTend and V Tend. A
general approach for this algorithm is to do an in-fix right-to-left search cover-
ing the most recent versions first and the oldest versions at last. It first checks
whether the upper right corner (TTend; V Tend) of the region is inside the tree
node. If so, we recursively search into the right subtree. Then if the lower left
corner (TTstart; V Tstart) is outside the tree node, we recursively search into the
left subtree. If we are in a leaf node, the version ID of the tree node is returned:

procedure SearchRegion( root :pointer; TTstart, V Tstart, TTend, V Tend :time)
f

if (root 6= null)
f

if (root is leaf node)
f

output root!ID;
g
else
f

if (TTend � root!TT) and (V Tend � root!VT)
f

SearchRegion( root!right,TTstart, V Tstart, TTend, V Tend);
g
if (TTstart < root!TT) or (V Tstart < root!VT)
f

SearchRegion( root!left, TTstart, V Tstart, TTend, V Tend);
g

g
g
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Figure 7.10: A bitemporal region query

g

However, this algorithm needs some adjustments. Consider the situation in
Figure 7.10 where we have searched down to tree node D (in the figure, those leaf-
nodes that intersect the query region are emphasized with a thick outline). How do
we prevent the algorithm from searching into and return leaf node 3? The lower
left corner of the search region is outside D, but lifespan 3 is not inside the region.
The natural approach would be to shrink the query region to the intersection of
the tree node’s inside region and the query region. Therefore, when we search
into the right subtree from tree node C the part of the query region in lifespan 2 is
not passed further down. Hence, the recursive call for right subtree should be as
follows:

: : :

if (TTend � root!TT) and (V Tend � root!VT)
f

SearchRegion( root!right, Max(TTstart,root!TT),
Max(V Tstart,root!VT), TTend, V Tend);

g
: : :

The reverse situation is illustrated in Figure 7.11, where we need to prevent the
algorithm to search into leaf node 2 from tree node D. Shrinking the query region
in a similar manner as for the inside region is not as trivial for the outside region.
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Fortunately it turns out that there are only two situations where we need to shrink
the query region before searching into the left subtree: the situations where the
entire query region is above or to the right of the tree node itself. Hence, before
searching into the left subtree we need only do the following adjustment:

: : :

if (TTstart � root!TT) or (V Tstart � root!VT)
f

if (TTstart > root!TT)
f

V Tend := Min(root!VT, V Tend) - 1;
g
if (V Tstart > root!VT)
f

TTend := Min(root!TT, TTend) - 1;
g
SearchRegion( root!left, TTstart, V Tstart, TTend, V Tend);

g
: : :

In traditional snapshot databases the only sensible thing to query is for the
states of entities. In temporal databases, querying for changes also makes sense.
For example, “find all transactions on this entity made during this period of time”
or “how often has this entity changed during this period of time”. The BL-tree may
support such queries by searching for tree nodes instead of the leaf nodes. With
BL-trees, it is a simple task to implement algorithms similar to the one above that
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finds all the tree nodes that are inside or intersects a given region. A more complex
algorithm though, is to find whether to bitemporal lifespans overlap.

7.3.6 Representing One Single Bitemporal Lifespan

The BL-tree, as we have shown in the previous sections, is based on the entity-
version model where one BL-tree describes and indexes the bitemporal lifespans
of all the versions of one single entity or object. However, in some applications
it is not always possible or practical to identify entities and the versions there of.
Moreover, most temporal database models today, like the one presented by Jensen
and Snodgrass [JS96] do not represent entities explicitly. Instead each tuple are
marked with a surrogate key identifying the entity the tuple is a version of. Thus,
two tuples with the same surrogate key are two versions of the same entity.

Furthermore, we may want to implement a branching model of time where one
entity may have several possible future (or past) versions. In this case, two versions
of the same entity may have overlapping bitemporal lifespans.

Fortunately, with a minor adaptation, the BL-trees can be utilized to suit the re-
quirements of both the above-mentioned models. This is done by letting one single
BL-tree represent one single lifespan. This adaptation is illustrated in Figure 7.12
where three examples of bitemporal lifespans and their associated BL-trees are
given.

7.4 Concluding Remarks

This article has presented a method of representing bitemporal lifespans of versions
of an entity in a bitemporal database called the BL-tree. The BL-tree is based on
extended binary search trees and combines the excellence of binary search trees
together with a new way of dividing two-dimensional space. The method is neat
and effective, both in terms of building the tree and to search in the tree, as the tree
will always be reasonably balanced.

We have also shown some query algorithms to select versions of an entity given
various constraints in bitemporal space. The algorithms have been tested on a
variety of examples using an array-based implementation. In this way, it is possible
to store and retrieve whole BL-trees in one disk access. Because the BL-tree is
based on a hierarchical data structure, we believe that it will perform reasonably



182 CHAPTER 7. THE BL-TREE

A

B

A

B C

D

E

A

B

C

A

B

C

A

B

C

D

E

A

B

TT TT TT

VTVTVT

Figure 7.12: Single bitemporal lifespans and their BL-trees

well, but it is maybe a bit awkward to implement in certain contexts, e.g. if the size
of the BL-trees exceed one disk block.

Our intension has been to present the idea of BL-trees, and to demonstrate its
applicability in bitemporal databases. However, we encourage future research in
BL-trees to accommodate performance testing, implementation of very large BL-
trees (larger than one disk block), and to develop indexing methods that operates
on BL-trees (such as the R-trees [KTF97]). Moreover, we also believe that the
principle of BL-trees can be implemented using the principle of AVL-trees, 2-3
trees or B-trees.

However, because of the huge amounts of information associated with many
applications, we advocate attribute-level versioning rather than tuple-level version-
ing. Moreover, in order to implement a branching model of time, we also foresee
an approach using BL-trees to represent single lifespans as they were briefly intro-
duced in Section 7.3.6.
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TEMPORAL FUZZY REGIONS:
CONCEPTS AND MEASUREMENTS

8.1 Introduction

The most common data model used in GIS today is the crisp model, i.e. the features
in the natural world are modelled as objects with sharp boundaries and well defined
interiors. It is well known that most features in the natural world have fuzzy bound-
aries or varying degrees of concentration of attributes inside. This means that crisp
models often represent a simplification of the underlying geographical phenom-
ena. What kind of boundary things in the natural world may have, depend on a
host of material such as topological, functional, temporal and other empirical con-
siderations pertaining to the bounded entities themselves. The complexity of the
boundary concept is explained by many authors, for example [Cou96] (p. 55).

The time dimension makes models of changing features a daunting task for
designers of geographical information systems (GIS). Since features of the natural
world change over time, we can discuss temporal fuzzy regions. The present paper
defines the concept of temporal fuzzy regions and proposes some measurements of
change based on their membership functions.

8.2 Change and Time

Time is a difficult concept because it has no physical characteristics. We cannot
grasp it; we only know that it exists. Even this knowledge is based on metaphors
or analogies and not on an objective substance. Change and movement, however,
are related to time and can be seen as an interpretation of time. Vasiliev [Vas96]
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distinguishes between five categories of temporal information: (1) moments, i.e.
the dating of an event in space; (2) duration, i.e. the continuance of an occurrence
in space; (3) structured time, i.e. the organization or standardization of space by
time; (4) time as distance, i.e. the use of time as a measurement of distance; and (5)
space as clock, i.e. spatial relations as measures of time. We can identify different
types of changes applicable to objects of the real world. We use the term object to
represent a real world ‘thing’ that might exist as a physical entity, such as an island,
a building or a mountain, or an abstract entity, such as the State of Maine and the
North Sea [HE97]. Change can result in: (1) change in object identity, (2) change
in properties of objects or (3) change in relations among objects.

Hornsby and Egenhofer [HE97] identify a number of operations that either
preserve or change the object identity. The operations identified are: (1) on single
objects, such as create, destruct or continue; (2) on the transition from an existing
object to a new object, such as spawn and metamorphose; (3) on combining single
objects, such as merge, generate and mix; (4) on combining composite objects,
such as aggregate and amalgamate; (5) on splitting single objects, such as splinter
and divide; and (6) on splitting composite objects, such as secede and dissolve.

The properties of objects, which also may change over time, describe the ob-
jects and are values that may be obtained through observation or measurement.
They may be grouped into value sets and are typically classified as spatial, such
as shape, size, dimension, orientation and location, and non-spatial, such as colour
and name of object [HE97].

Relations, which represent some association or condition among objects, may
also change over time. Such associations may include topological relations, such
as meet, inside and overlap, or metrical relations like distance and direction.

8.3 Fuzzy Regions

The membership function �A of a fuzzy set A [Zad65] has the form

�A : X ! [0; 1]; (8.1)
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where [0; 1] denotes the closed interval of real numbers from 0 to 1. A notation
that is often used in the literature for defining fuzzy sets with a finite support is

A =

nX
i=1

�i=xi: (8.2)

Similarly, when X is an interval of real numbers, a fuzzy set is often written in the
form

A =

Z
X

�A(x)=x: (8.3)

Altman [Alt94] defines a fuzzy region as a binary relation on the domain N 2.
However, in our application of fuzzy regions, we will not restrict fuzzy regions to
the domain of natural numbers, but we will also define fuzzy regions onR 2.

Definition 8.1. According to [Bjø98], we define a fuzzy region A as

A =

Z
�A(x; y)=(x; y); (8.4)

for all (x; y) 2 R2, where �A(x; y) 2 [0; 1] is the degree of membership at point
(x; y). Note that in Equation 8.4 the

R
sign has not the meaning of integral, but is

used to represent a fuzzy set with a continuous support.

As pointed out in [Alt94], there are two possible interpretations of each point
within a fuzzy region. It may be interpreted as the degree to which a point is inside
or a part of some feature; or as the concentration of some attribute belonging to the
feature at the particular point. Based on [Bjø98], we give the following definitions.

Definition 8.2. The support of a fuzzy region A, denoted suppA, is defined as

suppA = f(x; y) 2 R2 j �A(x; y) > 0g: (8.5)

Definition 8.3. The �-cut of a fuzzy regionA, denoted A�, is defined as

A� = f(x; y) 2 R2 j �A(x; y) � �g (8.6)

for all � 2 [0; 1].
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Definition 8.4. According to [Bjø98], the boundary of a �-cut of a fuzzy regionA,
denoted @(A�), is defined according to the usual boundary definition of point set
topology.

We also define a measurement concept for fuzzy regions. [Alt94] defines the
distance between to fuzzy regions as a fuzzy set. We apply a slightly different view
basing our measurement concept on the �-cut of the fuzzy region.

Definition 8.5. Assume a fuzzy region A and a function �A(�) that computes a
metrical measure ofA based on the �-cut A� ofA. The �-measure ofA is a fuzzy
set M defined as

M =

Z
�M(�A(�))=�A(�) (8.7)

for all � 2 (0; 1], where �M(�A(�)) = �. Note that � 2 (0; 1]means 0 < � � 1.

8.4 Temporal Fuzzy Regions

8.4.1 Basic Concepts

Definition 8.6. We define a period of time as a subset of R, i.e. T � R.

Definition 8.7. A temporal fuzzy region A is defined as

A = �A(x; y; t)=x; y; t (8.8)

for all t 2 T and for all (x; y) 2 R2.

Definition 8.8. The membership function of a temporal fuzzy region A will be
called the lifespan function of A.

Definition 8.9. Assume the temporal fuzzy region A and its lifespan function
�A(x; y; t) defined for a period of time T . The snapshot of A at time t = c 2 T is
a fuzzy region defined by

At=c =

Z
�At=c

(x; y)=x; y (8.9)

for all (x; y) 2 R2, where �At=c
(x; y) = �A(x; y; t) for t = c.
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By the previous definitions we have introduced the concept of temporal fuzzy
regions. This concept will be demonstrated by some examples at the end of this
paper. First, we introduce the concept of change of fuzzy regions.

8.4.2 Some Measurements of Change of Fuzzy Regions

As a measure of the change in the membership function of a fuzzy region, we define
three binary difference operators based on snapshots of temporal fuzzy regions.

Definition 8.10. Assume a temporal fuzzy region A and its two snapshots A t=1

andAt=2. The growth of A from t = 1 to t = 2 is a fuzzy region defined as

� = At=1 � At=2 =

Z
��(x; y)=x; y (8.10)

for all (x; y) 2 R2, where

��(x; y) =

�
j�At=2

(x; y)� �At=1
(x; y)j if �At=2

(x; y) > �At=1
(x; y);

0 otherwise:
(8.11)

Definition 8.11. Assume a temporal fuzzy region A and its two snapshots A t=1

andAt=2. The shrink of A from t = 1 to t = 2 is a fuzzy region defined as

� = At=1 	 At=2 =

Z
��(x; y)=x; y (8.12)

for all (x; y) 2 R2, where

��(x; y) =

�
j�At=2

(x; y)� �At=1
(x; y)j if �At=2

(x; y) < �At=1
(x; y);

0 otherwise:
(8.13)

Definition 8.12. Assume a temporal fuzzy region A and its two snapshots A t=1

andAt=2. The no-change of A from t = 1 to t = 2 is a fuzzy region defined as

� = At=1 � At=2 =

Z
��(x; y)=x; y (8.14)

for all (x; y) 2 R2,where

��(x; y) = 1� j�At=2
(x; y)� �At=1

(x; y)j: (8.15)
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We also define the change of the �-measurement of temporal fuzzy regions.

Definition 8.13. Assume a temporal fuzzy region A and its two snapshots A t=1

and At=2. The change of the �-measure of A from t = 1 to t = 2 is a fuzzy set
defined as

� = MAt=1
� MAt=2

=

Z
��(�)=[�At=2

(�)� �At=1
(�)] (8.16)

for all � 2 (0; 1], where ��(�) = �:

8.5 Examples

8.5.1 Change of the snapshot ofA

We assume the temporal fuzzy region ‘Forest’ and its two snapshots 1985 and 1995
shown in Figures 8.1 and 8.2. The growth, shrink and no-change of ‘Forest’ from
1985 to 1995 is computed from Equations 8.10, 8.12 and 8.14 respectively and
shown in Figure 8.3.

8.5.2 Change of the Distance from p toA

We assume the temporal fuzzy region ‘Forest’, denoted byA, and its two snapshots
1985 and 1995 shown in Figures 8.1 and 8.2. We define the �-measure M on the
basis of a function �A(�) that computes the shortest distance from a point p to
the boundary @(A�) of the �-cut of A. From Equation 8.7 we compute a distance
measure for ‘Forest 1985’ as

M1 =

X
0:2=2:6+ 0:4=2:9+ 0:6=3:6+ 0:8=3:6+ 1:0=5:7 (8.17)

and for ‘Forest 1995’

M2 =

X
0:2=3:1+ 0:4=5:8+ 0:6=4:5+ 0:8=3:6+ 1:0=4:5: (8.18)

The change of the distance measure from 1985 to 1995 is computed from Equation
8.16

� = MAt=1
� MAt=2

=

X
0:2=0:5+ 0:4=2:9+ 0:6=0:9+ 0:8=0:0+ 1:0=(�1:2): (8.19)
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Figure 8.1: Different �-levels of fuzzy region ‘Forest 1985’. The figure also shows
the distance from point p to the different �-levels of ‘Forest 1985’.
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Figure 8.2: Different �-levels of fuzzy region ‘Forest 1995’. The figure also shows
the distance from point p to the different �-levels of ‘Forest 1995’.



8.5. EXAMPLES 191

Figure 8.3: Change of the temporal fuzzy region ‘Forest’ from 1985 to 1995
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8.5.3 Change of the Area ofA

We assume the temporal fuzzy region ‘Forest’ and its two snapshots 1985 and 1995
shown in Figures 8.1 and 8.2. Now we define the �-measure M on the basis of
a function �A(�) that computes the area of the �-cut A�. From Equation 8.7 we
compute the area measure for ‘Forest 1985’ as

M1 =

X
0:2=72 + 0:4=59+ 0:6=48+ 0:8=35+ 1:0=6 (8.20)

and for ‘Forest 1995’

M2 =

X
0:2=61+ 0:4=56 + 0:6=47 + 0:8=37+ 1:0=11: (8.21)

The change of the measure from 1985 to 1995 is computed from Equation 8.16 as

� = MAt=1
� MAt=2

=

X
0:2=(�11)+ 0:4=(�3)+ 0:6=(�1)+ 0:8=2+ 1:0=5: (8.22)

8.6 Conclusions and Future Work

This paper has introduced a concept termed temporal fuzzy region. Based on snap-
shots of temporal fuzzy regions we have proposed three difference operators that
model the linguistic expressions: (1) growth, (2) shrink, and (3) no-change of a
fuzzy regionA from time t1 to time t2. We have also introduced an �-measure that
is applicable to compute the change of metrical properties of fuzzy regions, such
as the area of a region and the distance from a point to a region. Some examples
demonstrate the proposed operators and measurements.

Since most of the features in the real world have fuzzy characteristics, future
research in geographical information science should pay more attention to the de-
velopment of a theoretical basis for modelling change in fuzzy objects as well as
change in topological and geometrical relations among them over time.
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CONCLUSION

This work has been initiated by the increasing need to handle historical information
in GIS. However, the models used in GIS and database systems today are not well
suited to handle information that is varying over both space and time. The aim
of this thesis has therefore been to develop a model or framework, such that the
characteristics of spatiotemporal information are preserved in the model.

In this thesis, four different frameworks have been investigated. By using con-
ceptual modelling languages developers can describe spatiotemporal information
and systems dealing with such information at the conceptual level. However, these
languages poorly capture the internal structure of such information. A more math-
ematical approach is therefore useful.

One approach is to use directed acyclic graphs to capture successor relation-
ships between objects or states (versions) of objects. Using history graphs, the
temporal relationships between both states and the changes between them are pre-
served. Using set-theory, an even more comprehensive and formal framework can
be defined. The temporal set-theory, in turn, is associated with constructions that
describe the tropology of information.

Finally, the concepts from the temporal set-theory are used to propose a tem-
poral object-oriented model for geographic information. With these models, we
consider ourselves a significant step closer to the implementation of a temporal
GIS.

The accomplishments of this thesis can be summarized as follows:

� A large body of research from a wide range of research fields has been stud-
ied and integrated.

� A set of methodologies to study and model spatiotemporal information has
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been described.

� The temporal structure of information has been investigated and the need to
explicitly describe changes has been pointed out.

� A formal and fundamental framework based on the set-theory, aimed at de-
scribing temporal information and the changes therein, has been proposed.

� Concepts and properties of bitemporal information have been studied and
uncovered.

From this standpoint, there are various aspects that should undergo futher in-
vestigation:

� The temporal and tropological relationships between states and changes to-
gether with the topological relationships that exist perpendicular to the time
line need to be integrated, probably by using graph theory. In this thesis, we
have been studying the tropological relationships with only limmited con-
cern to the topoloical relationships.

� The properties of the temporal set-theory and the associated tropology need
to be investigated from a mathematical point of view. In particular, exten-
sions akin to general and algebraic topology should be of interest. One idea
that we have been playing around with, is to use a vector-analogy in order to
describe the change from one state to another (as a vector may describe the
change in position from one point to another).

Many organizations today need to handle temporal information, and temporal
information is necessary in order to obtain knowledge that current systems are un-
able to deduce. Research on temporal GIS and spatiotemporal modelling is there-
fore important. Hopefully, this thesis is a valuable contribution to this research.



Appendix A

SET-THEORY AND RELATED TOPICS

A.1 The Naive Set-Theory

The set-theory is one of the most fundamental theories of mathematics, and has
provided a basis for other mathematical theory as well as for many areas of com-
puter science. It is expected that the reader is familiar with this theory, but it is
included here for the sake of comprehensiveness and for the sake of clarifying the
terminology and notation used throughout this thesis.

A problem with the set-theory was discovered by Russel. Let S be the set of
all sets which are not members of themselves, in other words S = fxjx =2 xg .
Then S is neither a member of itself nor not a member of itself. In other words
S 2 S () S =2 S. This paradox can be avoided by setting up a number of
axioms. However, in this section we will briefly review the original, but naive
set-theory, that is not based on such an axiomatic schema.

A.1.1 Basic Notation

A set is a collection of objects called elements or members, and a set is said to
contain its members. To indicate that a is a member of the setA we write

a 2 A; (A.1)

and to indicate that a is not a member ofA we write

a =2 A: (A.2)
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A set has no inherent ordering of its members, and a set cannot contain the same
member twice. If a setA has members a, b and c we write

A = fa; b; cg (A.3)

We may also use the set builder notation,

A = fxjx has some property P g (A.4)

The number of members of a set A denoted jAj is called the cardinality of A. If
jAj is a finite number, thenA is called a finite set, otherwise it is called an infinite
set. A set that has no members is called the empty set and is denoted by the symbol
;.

If all members of a setA, are also a members of a setB, thenA is said to be a
subset ofA and is written

A � B (A.5)

Two setsA andB are equal if bothA � B andB � A.
If A is a set, then the power set P (A) is the set of all subsets of A. In other

words,

P (A) = fxjx � Ag (A.6)

Both the empty set ; and the set A itself are members of P (A). A set whose
members are themselves sets are often referred to as a family of sets.

A.1.2 Operations on Sets

There are four main operators on sets. These are union, intersection, difference and
complement. They are defined as follows: let A and B be sets, then the union of
A andB, denotedA [B, is defined as

A [B = fxjx 2 A _ x 2 Bg; (A.7)

the intersection ofA andB, denotedA \B, is defined as

A \B = fxjx 2 A ^ x 2 Bg; (A.8)
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the difference ofA andB, denotedAnB is defined as

AnB = fxjx 2 A^ x =2 Bg (A.9)

and the complement is defined as

A = fxjx =2 Ag: (A.10)

A.1.3 Functions

Functions and relations are fundamental concepts of the set-theory. Databases and
programming languages are heavily based on these concepts.

Let A and B be sets. A function f from A to B, is an assignment of exactly
one element b = f(a) of B, to each element a of A. A function from A to B is
written

f :A! B: (A.11)

The setA is called the domain of f while the setB is called the co-domain of f .
For functions, a number of properties are defined. A function f is said to be

one-to-one or injective iff (if and only if), f(x) = f(y) implies that x = y. It
is called onto or surjective iff for every element b of B there is an element a of
A with f(a) = b. If a function f is both one-to-one and onto, it is called a one-
to-one correspondence or a bijection. In that case, there exist an inverse function
f
�1

: B! A such that if b = f(a) then a = f
�1
(b).

A special set that is commonly defined is the universal set U, which contain
all the elements of concern in a particular context. Then, for each subset A in U
we can define a characteristic function

�A : U! f0; 1g (A.12)

such that if �A(x) = 1 then x 2 A, and if �A(x) = 0 then x =2 A.
An important application of functions is that the output of one function can be

used as input to another function. This, way we may form compositions of two or
more functions. Let f : A ! B and g : B ! C be two functions such that the
codomain of f is the domain of g, then the composition f � g is defined by

(f � g)(a) = f(g(a)) (A.13)
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Often, we need to define sets of functions into some particular domainB from
a particular codomainA. Such a set is indicated by the symbolBA and is defined
by

B
A
= ff jf :A! Bg (A.14)

A.1.4 Relations and Cartesian Product

We now move on to another important aspect of the set-theory which is called
relations. Before defining a relation, we define the Cartesian product of two or
more sets. IfA1; : : : ;An are n sets, then the Cartesian productA1 � : : :�An is
the set of all n-tuples ha1; : : :ani such that ai 2 Ai for i = 1; : : : ; n. If n = 2 the
members of the Cartesian product are called ordered pairs.

Note that a Cartesian product contains all possible permutations of elements
from the sets, thus the number of elements in the Cartesian product equals the
product of the number of elements in all its sets.

A relation is a set that contain relationships between members of different sets.
LetA1; : : : ;An be n sets, then an n-ary relation onA1; : : : ;An is a subset of the
Cartesian productA1� : : :�An. The setsA1; : : : ;An are called the domains of
the relation and n is called the degree.

If n = 2, the relation is called a binary relation from A1 to A2, and if A1 =

A2 = A the relation is called a relation on the setA. IfR is a binary relation from
A to B, it is common to write aRb to denote that ha; bi is a member of R. Note
that relations are also sets, but their members are pairs or n-tuples.

There are many interesting properties of relations on a single set. In the fol-
lowing, some of these properties are defined: Let R be a binary relation on a set
A. The relation R is called reflexive if ha; ai 2 R for every element a of A, and
it is called irreflexive if ha; ai =2 R. It is called symmetric if ha; bi 2 R implies
that hb; ai 2 R, antisymmetric if ha; bi 2 R implies that a = b, and asymmetric if
ha; bi 2 R implies that hb; ai =2 R . The relationR is called transitive if whenever
ha; bi 2 R and hb; ci 2 R, implies that ha; ci 2 R.

Based on these properties, a number of relation types can be identified, e.g.
an equivalence relation is a relation that is reflexive, symmetric and transitive. In
practice, an equivalence relation partitions a set into equivalence classes such that
each element of a class is related to all the other members of that class, an no
member of any other class.
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A relation is called a partial ordering if it is reflexive, antisymmetric and tran-
sitive. A setA together with a partial orderingR is called a partially ordered set or
a poset and is denoted (A;R). In practice, a partial ordering puts an order relation
between some pairs of elements in A, but not all. A relation that puts an order
relation between all pairs, is called a total order or a linear order. It is common to
use the symbol� for orderings.

A.2 Point-Set Topology

An application of the set-theory is obtained by defining sets whose members are
points in some space. The set of real numbers R is an example of such a space;
the Euclidean plane E2 is another such space that is of great interest to us. In the
sequel we use the symbol S to indicate the space of concern. The point-set theory
provides the basis of what we know as the point-set topology. In the point-set
theory the sets are called spaces or metric spaces, and in order to be called a metric
space, the set must be non-empty and a metric must be set up in the set.

A.2.1 Metrics and Metric Spaces

A metric is set up in S by associating every pair of points p 1 and p2 of S a non-
negative number �(p1; p2) called the distance between them, that satisfies the fol-
lowing three axioms:

�(p1; p2) = �(p2; p1) (A.15)

�(p1; p2) = 0 () p2 = p1 (A.16)

�(p1; p2) + �(p2; p3) � �(p1; p3) (A.17)

.
To every point p in a space S we can define a spherical neighbourhoodN(p; r)

which is the set of points in S that is within the positive distance r from p. In other
words:

N(p; r) = fq 2 Sj�(p; q) < rg; (r > 0) (A.18)

We will now study subsets of S and certain properties of these sets such as
openness and closedness. Indeed, open and closed sets in metric spaces correspond
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to the concepts of whether the points on the boundary of a set are included in the
set or not. However, the formal definitions of such sets may be a bit more elaborate
as we will see in the following section.

A.2.2 Open and Closed Sets

Let A be a subset of S. A point p is called an interior point of a set A if there is
a neighbourhoodN(p; r) � A. The interior of a set A, denoted I(A) is then the
set of all interior points ofA. If all points inA are interior points, thenA is called
an open set.

A point p of S is called a limit point ofA if every neighbourhoodN(p; r) con-
tains at least one point inA different from p. A limit point ofA is not necessarily
a member of A, but all interior points are also limit points. A point in A that is
not a limit point is called an isolated point. The set of all limit points of a setA is
called the derived set and is denotedA 0. If we compute the union ofA andA0 we
obtain the closure ofA, denotedK(A). In other words:

K(A) = A [A0 (A.19)

If A = K(A) thenA is said to be a closed set.
A point p of S is called a boundary point of A if it is not an interior point of

A, but every neighbourhood of p has at least one point in common with A. The
boundary ofA, denoted B(A) is then defined as

B(A) = K(A)nI(A) (A.20)

A boundary point is either a limit point or an isolated point and a limit point is
either a boundary point or an interior point. A point that is neither an interior point
nor a boundary pointofA, is called an exterior point ofA.

A.2.3 Some Types and Properties of Point Sets

In general, we may classify sets in metric space according to a number of different
properties. For example, a set is said to be bounded if there exist a finite upper
bound for the distance between any two pairs of points in the set. A set is said to be
connected if it is possible to join any pair of points in the set with a curve such that
all points on the curve are also members of the set. A set that is both connected
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and open is also referred to as a domain. A set is said to be convex if it is possible
to join any pair of points in the set with a straight line segment such that all points
on the segment are also in the set. From these definitions it is clear that a convex
set is also a connected set.

A region is an open connected set (i.e. a domain), plus some or all of its bound-
ary points. If we add all the boundary points to a domain, we obtain a closed
region.

A set of pointsA is called a discrete set if it has no limit points, in other words,
if all the points ofA are isolated points. A setA is dense in a setB containingA,
if every spherical neighbourhood that contains a point of B also contains a point
ofA. In other words, a setA is dense inB if

K(A) = B; (A.21)

e.g. the set of rational numbers is dense in the set of real numbers.
A setA of points is nowhere dense if

I(K(A)) = ; (A.22)

A setA of points is dense-in-itself, ifA �A 0, that is, if every point ofA is a limit
point. A set that is both dense-in-itself and closed is called a perfect set.

A.2.4 Topological Spaces and Homeomorphisms

A set S along with a family T of open subsets of S is said to be a topology if the
subsets in T satisfy the following three properties:

1. The set S and the the empty set ; are members of T.

2. Whenever A andB are members of T, so isA\B.

3. Whenever A andB are members of T, so isA[B.

A space S for which a topologyT has been specified is called a topological space.
A function f : S1 ! S2 from a space S1 to a space S2 is continuous provided

that for each open setX in S2 the inverse image

f
�1
(X) = fp 2 Sjf(p) 2Xg (A.23)
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is open in S1. A one-to-one correspondence f : S1 ! S2 for which both f and
f
�1 are continuous is called a homeomorphism. The topologiesT 1 andT2 formed

on the topological spaces S1 and S2 respectively, are called homeomorphic if there
exist a homeomorphism between the elements of S1 and S2.

If S1 and S2 are topological spaces with topologiesT 1 andT2 respectively, the
topology on the product S1�S2 can be defined by taking, as a base, the collection
of all open sets of the formA1�A2 whereA1 2 T1 andA2 2 T2. This is called
the product topology for S1 � S2.

A.3 Fibre Bundles

In mathematics, a bundle is, roughly speaking, a topological space with another
topological space embedded in each point. By definition a bundle is a triple
hE;B; �i where E is a topological space called the total space, B is a topolog-
ical space called th base space and � is a continuous and surjective mapping

� : E! B; (A.24)

known as the projection mapping. For each point p in B, the set of points � �1(p)
is called the fibre over p.

The mathematicians have been playing around with this construct for some
time, using different topological spaces such as the Möbius strip or the Klein bottle.
However, it is only the simplest bundle that is of interest to us, viz. the Cartesian
product bundle hB � F;B; �i, where F and B are topological spaces and � :

B � F! B is defined as

�(p1; p2) = p1 (A.25)

for all p1 2 B and p2 2 F.
If we set the space F to the Euclidean plane E 2 and the base space B to the

time domainT, a Cartesian product bundle indeed can be used to describe a region
(or point-set) that is varying over time. Then the region that is changing over time,
will be given by the function

�
�1
(t) (A.26)
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1-sipmlex 3-simplex2-simplex0-simplex

Figure A.1: Simplexes

A.4 Algebraic Topology

A.4.1 Simplexes and Complexes

In general, a polyhedron is like a connected set in a metric space. However, we
define them in terms of vertices, line segments, triangles, tetrahedrons and so on,
joined together in a so-called modulo 2 homology. A number of definitions follows:

A d-simplex �d, spanned by a set of vertices fp0; : : : ; pdg in Ed is the set of
points contained in the convex hull of the vertices fp 0; : : :pdg. Figure A.1 shows
the simplexes for d = 0; : : : ; 3.

A simplex �d is a face of a simplex �n if d � n, and each vertex of �d is also
a vertex of �n. The faces of �n other than �n itself are called proper faces. Two
simplexes �m and �n are properly joined if, and only if their intersection �m \ �n

is a face of both �m and �n.
A geometric complex (or simplical complex or complex) is a finite familyK of

properly joined simplexes, such that each face of a member ofK is also a member
of K. The dimension of K is the largest positive integer r such that K has an
r-simplex. The union of the members ofK is called the geometric carrier ofK or
the polyhedron associated withK and is denoted jKj.

If there is a geometric complex K whose carrier jKj is homeomorphic to a
topological space S , then S is said to be a triangulable space, and the complexK
is called a triangulation of S.

Two simplexes s1 and s2 of a complexK are connected if either of the follow-
ing conditions is satisfied:

1. the two simplexes share a common boundary.

2. there is a sequence �1; : : : ; �p of p 1-simplexes such that �i and �i+1 share
a boundary for i = i; : : : ; i � 1, and such that the sequence itself share a
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boundary with s1 and s2.

Thus, a complexK is connected if every pair of simplexes ofK are connected.

A.4.2 Oriented Simplexes and Complexes

An oriented n-simplex, with n � 1, is obtained by ordering the vertices of the n-
simplex. The equivalence class of simplexes with an even permutation of the order-
ing is called a positively oriented simplexes, denoted +�

n, while those simplexes
with odd permutations of the ordering are called negatively ordered simplexes, de-
noted ��n. An oriented complex is thus obtained by assigning an orientation to
each of the simplexes of the complex, e.g. given a 2-simplex with the vertices
p0; p1; p2 and the ordering p0 < p1 < p2, then we have the ordered simplexes:

+�
2

= hp0; p1; p2i; hp1; p2; p0i; hp2; p0; p1i (A.27)

��2 = hp2; p1; p0i; hp1; p0; p2i; hp0; p2; p1i (A.28)

If K is an oriented complex with simplexes � p+1 and �
p. Then an incidence

number [�p+1; �p] can be defined such that:

[�
p+1

; �
p
] =

8<
:

0 if �p is not a face of �p+1

1 if the orientation of �p agrees with �p+1

�1 if the orientation of �p disagrees with �p+1
(A.29)

For example, Figure A.2 shows a small complex, and we may identify a number of
incidence numbers:

[habci; habi] = 1

[habci; haci] = �1

[habci; hbdi] = 0

[habi; hai] = �1

[habi; hbi] = 1

[habi; hci] = 0

The matrix

�(p) = [�i;j(p)] ; (A.30)

where �i;j(p) = [�
p+1

; �
p
], is called the pth incidence matrix ofK.
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Figure A.2: A simplical 2-complex

A.4.3 Simplical Homology Groups

In general, the homology group of a complex describes the arrangement of the
simplexes in the complex, and thereby telling us about ‘holes’ in the associated
polyhedron. First some definitions:

A p-dimensional chain or p-chain is a formal finite sum of simplexes � p
i

dp =

X
gi�

p
i (A.31)

where the expression g�p is called an elementary p-chain and the index i ranges
over all p-simplexes in a complexK, e.g. based on Figure A.2 we may identify the
p-chains

c0 = g0hai+ g1hbi+ g2hci (A.32)

c1 = h0habi+ h1hbci+ h2haci (A.33)

The set of p-chains of a complexK is called the p-chain group ofK and is denoted
Cp(K)

The boundary of an elementary p-chain g�p is defined by

B(g�p) =
X

[�
p
; �

p�1i]g�
p�1i (A.34)

for �p�1i in K. The boundary of a 0-chain is 0. Thus, the boundary of a p-chain
cp is defined as

B(cp) =
X

B(g�p) =
X
i

X
j

[�
p
j ; �

p�1
i ]gj�

p�1
i (A.35)
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A special type of p-chains is called p-cycles. A p-chain cp is a p-cycle if

B(cp) = 0: (A.36)

and it is called a p-boundary if there is a (p+ 1)-chain cp+1 such that

B(cp+1) = cp (A.37)

The subgroup Zp(K) of p-cycles of Cp(K) is called the p-cycle group of K, and
the set of set Bp(K) of p-boundaries of Cp(K) is called the p-boundary group of
K.

Two p-cycles wp and zp in s complex K are homologous, denoted wp � zp, if
there is a (p+ 1)-chain cp+1 such that

Bcp+1 = wp � zp: (A.38)

This relation of homology for p-cycles is an equivalence relation and partitions
Zp(K) into homology classes.

Finally we can define the p-dimensional homology group of an oriented com-
plexK as the quotient group

Hp(K) =
Zp(K)

Bp(K)
(A.39)

A.4.4 Polyhedrons and Manifolds

The simplical complexes define a set of polyhedrons built from simplexes in a
triangulation. However, in constructive geometry it is also common to build objects
from faces with more that three sides.

A term that most users of GIS are familiar with is the polygon. A polygon is
a closed plane figure with n sides. If all sides and angles are equal, the polygon is
called regular. Regular polygons can either be a convex polygon such as a simple
pentagon or star polygon where two sides may intersect.

A rectilinear polyhedron in E 3 is a solid bounded by properly joined convex
polygons. The boundary polygons are called faces, the intersection between two
faces are called edges while the intersection between two or more edges are called
vertices. If a rectilinear polyhedron is homeomorphic to a sphere,then it is called a
simple polyhedron, if the faces of the polyhedron are regular polygons with same
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size and shape, it is called a regular polyhedron. There are totally five regular
convex polyhedrons.

In GIS, regular polyhedron are very rare, but there are some results that can be
of use in GIS, e.g. Euler’s theorem. Euler’s theorem states that if V is the number
of vertices E is the number of edges, and F is the number of faces of a simple
polyhedron, then the following equation holds:

V � E + F = 2 (A.40)

A generalization of Euler’s formula applies to 2-manifolds that have faces with
holes:

V � E + F �H = 2(C �G); (A.41)

where H is the number of holes in the faces, G is the number of holes that pass
through the object and C is the number of separate components (parts) of the ob-
jects.

A.5 Fuzzy Set Theory

A problem with the traditional set-theory is that it is based on boolean logic where
a fact is either true or flase. Thus, an element is either a member of a set, or it is
not. In the fuzzy set theory, objects can be partly members of a set.

A.5.1 Basic Definitions

The degree of membership in a set is taken from the unit interval I= [0; 1] and a
fuzzy set � can thereby be defined as a function from a universeU into I

� :U! I (A.42)

that for each element x in U returns the a number in the range [0; 1] representing
the grade of membership x has in �. If �(x) = 0, then the element x has no
membership in �, if �(x) = 1, then x has a full membership in �. To avoid
confusion with traditional sets, we use the retronym crisp set to denote a traditional
set as described in Section A.1. The set of all fuzzy sets over a universe U can
thereby be identified by the symbol IU.
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The support of a fuzzy set �, denoted supp(�), is the crisp set obtained by
assembling all elements whose grade of membership in � is larger than 0. In other
words,

supp(�) = fx 2 Uj�(x) > 0g (A.43)

However, we often need to define a crisp set of those elements that has a member-
ship grade larger than som value �. This leads us to the definion of the so-called
�-cut, which is denotedA�:

A�(�) = fx 2 Uj�(x) � �g (A.44)

In most situations, the underlying universal set U is a metric space. If so, we
can say that a fuzzy set � is convex if for all � in [0; 1]

�(�x1 + (1� �)x2) � minf�(x1); �(x2)g (A.45)

for all x1 and x2 inU.
For a finite fuzzy set � the cardinality of � denoted j�j is defined as

j�j =
X
x2U

�(x) (A.46)

whereas the relative cardinality is defined as

k�k =
j�j

jUj
(A.47)

A.5.2 Basic Operations on Fuzzy Sets

If �A and �B are fuzzy sets, then the intersection of �A and �B is defined by

(�A \ �B)(x) = minf�A(x); �B(x)g; (A.48)

the union is defined by

(�A [ �B)(x) = maxf�A(x); �B(x)g; (A.49)

the difference is defined by

(�An�B)(x) = maxf�A(x)� �B(x); 0g; (A.50)

and the complement of a fuzzy set �A is defined by

�A(x) = 1� �A(x): (A.51)
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A.5.3 Fuzzy Relations

LetA andB be crisp sets, then a fuzzy relation � fromA toB is the fuzzy set

� :A�B! I (A.52)

Then, if a 2 A and b 2 B then the value �(a; b) is a number that determines the
grade of which the elements a and b are related to each other.

Let � be a binary fuzzy relation on a crisp setA. If, for all a inA, �(a; a) = 1

then � is called reflexive, if for all a; b in A, �(a; b) = �(b; a) then � is called
symmetric. If for all a; b; c inA

�(a; c)� minf�(a; b); �(b; c)g (A.53)

then � is called max-min transitive, and if

�(a; c) � �(a; b) � �(b; c) (A.54)

then � is called max-product transitive.

A.5.4 Fuzzy Numbers and Fuzzy Regions

A fuzzy number � is a convex fuzzy set, whose underlying space U is the set of
real numbersR, such that

1. there is exactly one x 2 R, called the mean value, such that �(x) = 1

2. �(x) is piecewise continuous.

A fuzzy number � is called positive if �(x) = 0 implies that x < 0 and negative if
�(x) = 0 implies that x > 0

A fuzzy region is a set whose underlying space U is the Euclidean plane E 2 .
However, a fuzzy regions does not need to satisfy the conditions above, and it does
not need be convex.

A.6 Graphs

There are many phenomena in the real world that exhibit a graph-like structure, e.g.
a road network or a computer network. In the following, we will define a number
of graph types and associated concepts.
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A.6.1 Graph Types

A simple graph is a structureG = hV;Ei that consist of a nonempty set of vertices
V, and a set of unordered pairs of distinct elements ofV called edges. In a simple
graph we can have at most one edge between any distinct pair of vertices.

A graph that can contain more than one edge between any pair of vertices is
called a multigraph and is defined as a structureG = hV;Ei consisting of a setV
of vertices, a set E of edges, and a function f : E ! ffv1; v2gjv1; v2 2 V; v1 6=
v2g that associates every edge with a pair of vertices. The edges e1 and e2 are called
multiple or parallel edges if they connect the same vertices, i.e. if f(e 1) = f(e2).

A multigraph that may contain edges from a vertex to itself is called a pseu-
dograph. An edge of a pseudograph is called a loop if f(e) = fvg for some v in
V.

Simple graphs, multigraphs and pseudographs are undirected graphs which
means that the edges have no inherent direction. However, in a road network,
we may have some one-way streets. A directed graph or digraph hV;Ei consist
of a set of vertices V and a binary relation E on V containing edges. Similarly a
directed multigraphG = hV;Ei consists of a set of verticesV and a set of edges
E, and a function f : E! V�V. The edges e1 and e2 are called multiple edges
if f(e1) = f(e2).

A.6.2 Terminology of Graphs

Two vertices v1 and v2 in an undirected graphG are called adjacent or neighbours
inG, if fv1; v2g is an edge inG. If e = fv1; v2g, the edge e is called incident with
the vertices v1 and v2. The edge e is also said to connect v1 and v2. The vertices
v1 and v2 are called endpoints of the edge fv1; v2g.

The degree of a vertex in an undirected graph is the number of edges incident
with it, except that a loop at a vertex contributes twice to the degree of that vertex.
The degree of the vertex v is denoted deg(v).

When hv1; v2i is an edge in a directed graphG, v1 is said to be adjacent to v2
and v2 is said to be adjacent from v1. The vertex v1 is called the initial vertex of
hv1; v2i and v2 is called the terminal or end vertex of hv1; v2i.

A simple graph is called bipartite if its vertex setV can be partitioned into two
disjoint nonempty sets V1 and V2 such that every edge in the graph connects a
vertex inV1 and a vertex inV2.
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A subgraph of a graph G = hV;Ei is a graph H = hW;Fi where W �
V and F � E. The union of two simple graphs G1 = hV1;E1; i and G2 =

hV2;E2i, denotedG1[G2, is the simple graph with vertex setV1[V2 and edge
set E1 [E2.

The simple graphsG1 = hV1;E1i andG2 = hV2;E2i are isomorphic if there
is a one-to-one correspondence f , called an isomorphism, from V1 toV2 with the
property that a and b are adjacent in G1 if and only if f(a) and f(b) are adjacent
inG2, for all a and b inV1.

A path from a to b in an undirected graph is a sequence of one or more edges

(fv0; v1g; fv1; v2g; : : : ; fvn�1; vng) (A.55)

inG where v1 = a and vn = b. When the graph is simple, we denote the path by
its vertex sequence (v0; v1; : : : ; vn) and has the number of edges in the path n is
called the length of the path.

A path that begins and ends in the same vertex is called a cycle or a circuit,
and it is called a simple path if it does not contain the same edge more than once.
An undirected graph is called connected if there is a path between every pair of
distinct vertices of the graph. A directed acyclic graph, also known as a DAG, is a
directed graph that contain no cycles.
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[Tve92] Håvard Tveite. Sub-structure abstractions in geographical data mod-
elling. In Proceedings: Neste Generasjon GIS. The University of
Trondheim, the Norwegian Institute of Technology, 1992.

[TWL92] C. I. Theoudoulidis, B. Wangler, and P. Loucopoulos. The entity-
relationship-time model. In Conceptual Modeling, Database and
CASE, An integrated view of information systems development, chap-
ter 4. John Wiley & Sons inc., 1992.

[TYF86] Toby J. Teorey, Dongqing Yang, and James P. Fry. A logical de-
sign methodology for relational databases using the extended entity-
relationship model. ACM Computing Surveys, 18(2), June 1986.

[Vas96] Irina Vasiliev. Design issues to be considered when mapping time.
In C. H. Wood and C. P. Keller, editors, Cartographic Design: The-
oretical and Practical Perspectives, chapter 11, pages 137–146. John
Wiley & Sons Ltd., Chichester, 1996.

[VBH96] Andreas Voigtmann, Ludger Becker, and Klaus H. Hinrichs. Tempo-
ral extensions for an object-oriented geo-data-model. In Proceedings
of the 7th International Symposium on Spatial Data Handling, pages
11A.25–11A.41, 1996.

[VR96] Gunnar Vatn and Svenn Halvard Rognås. The time dimension in GIS.
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